156 research outputs found

    Molecular cloning and characterization of the porcine prostaglandin transporter (SLCO2A1): evaluation of its role in F4 mediated neonatal diarrhoea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because prostaglandins are involved in many (patho)physiological processes, <it>SLCO2A1 </it>was already characterized in several species in an attempt to unravel specific processes/deficiencies. Here, we describe the molecular cloning and characterization of the porcine ortholog in order to evaluate its possible involvement in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea, based on a positional candidate gene approach study.</p> <p>Results</p> <p>Porcine <it>SLCO2A1 </it>is organized in 14 exons, containing an open reading frame of 1935 bp, encoding a 12-transmembrane organic anion cell surface transporter of 644 aa. The -388 to -5 upstream region comprises a (CpG)<sub>48 </sub>island containing a number of conserved promoter elements, including a TATA box. A potential alternative promoter region was found in the conserved -973 to -700 upstream region. No consensus polyadenylation signal was discovered in the 3' UTR. Repeat sequences were found in 15% of all the non coding sequences.</p> <p>As expected for a multifunctional protein, a wide tissue distribution was observed. mRNA expression was found in the adrenal gland, bladder, caecum, colon (centripetal coil/centrifugal coil), diaphragm, duodenum, gallbladder, heart, ileum, jejunum, kidney, liver, longissimus dorsi muscle, lung, lymph node, mesenterium, rectum, spleen, stomach, tongue and ureter, but not in the aorta, oesophagus and pancreas.</p> <p>The promoter region and the exons (including the splice sites) of <it>SLCO2A1 </it>were resequenced in 5 F4ab/ac receptor positive and 5 F4ab/ac receptor negative pigs. Two silent and 2 missense (both S → L at position 360 and 633) mutations were found, but none was associated with the F4ab/ac receptor phenotype. In addition, no phenotype associated differential mRNA expression or alternative/abberant splicing/polyadenylation was found in the jejunum.</p> <p>Conclusion</p> <p>The molecular cloning and characterization of porcine <it>SLCO2A1 </it>not only contributes to the already existing knowledge about the transporter in general, but enables studies on porcine prostaglandin related processes/deficiencies as patient and/or model. Here we examined its possible involvement as receptor in F4 enterotoxigenic <it>E. coli </it>mediated neonatal diarrhoea. Because no phenotype associated differences could be found in the gene sequence nor in its jejunal transcription profile of F4ab/ac receptor positive/negative pigs, SLCO2A1 can most likely be excluded as receptor for F4 bacteria.</p

    Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis

    Get PDF
    OBJECTIVES: Swine have been regarded as intermediate hosts in the spread of influenza from birds to humans but studies of the sialylated glycans that comprise their respiratory tract have not been extensively studied in the past. This study analyzed the sialylated N-glycan and O-glycan profile of swine trachea and lung and correlated this with ex-vivo infection of swine explants with avian influenza viruses. SAMPLE: Lungs and tracheal samples were obtained from normal farm and laboratory raised swine and used for ex vivo infection as well as mass spectrometric analysis. Infection of the ex vivo tissues used high pathogenic and low pathogenic avian viruses including the novel H7N9 virus that emerged in China in early 2013. MAIN OUTCOME MEASURES: Assessment of successful replication was determined by TCID50 as well as virus immunohistochemistry. The N-glycan and O-glycan profiles were measured by MALDI-TOF and sialylated linkages were determined by sialidase treatment. Lectin binding histochemistry was also performed on formalin fixed tissue samples with positive binding detected by chromogen staining. RESULTS: The swine respiratory tract glycans differed from the human respiratory tact glycans in two main areas. There was a greater abundance of Gal-α-Gal linkages resulting in a relative decrease in sialylated glycans. The swine respiratory tract also had a greater proportion of glycans containing Neu5Gc and Siaα2-6 glycans than the human respiratory tract. Infection with avian viruses was confined primarily to lung bronchioles rather than trachea and parenchyma. CONCLUSIONS: In contrast to previous studies we found that there was not as much expression of Siaα2-3 glycans on the surface of the trachea. Infection of Siaα2-3 binding avian viruses was restricted to the lower respiratory tract bronchioles. This finding may diminish the ability of the swine to act as an intermediary in the transmission of avian viruses to humans.published_or_final_versio

    Automatic colorimetric calibration of human wounds

    Get PDF
    Contains fulltext : 88431.pdf (publisher's version ) (Open Access)BACKGROUND: Recently, digital photography in medicine is considered an acceptable tool in many clinical domains, e.g. wound care. Although ever higher resolutions are available, reproducibility is still poor and visual comparison of images remains difficult. This is even more the case for measurements performed on such images (colour, area, etc.). This problem is often neglected and images are freely compared and exchanged without further thought. METHODS: The first experiment checked whether camera settings or lighting conditions could negatively affect the quality of colorimetric calibration. Digital images plus a calibration chart were exposed to a variety of conditions. Precision and accuracy of colours after calibration were quantitatively assessed with a probability distribution for perceptual colour differences (dE_ab). The second experiment was designed to assess the impact of the automatic calibration procedure (i.e. chart detection) on real-world measurements. 40 Different images of real wounds were acquired and a region of interest was selected in each image. 3 Rotated versions of each image were automatically calibrated and colour differences were calculated. RESULTS: 1st Experiment: Colour differences between the measurements and real spectrophotometric measurements reveal median dE_ab values respectively 6.40 for the proper patches of calibrated normal images and 17.75 for uncalibrated images demonstrating an important improvement in accuracy after calibration. The reproducibility, visualized by the probability distribution of the dE_ab errors between 2 measurements of the patches of the images has a median of 3.43 dE* for all calibrated images, 23.26 dE_ab for all uncalibrated images. If we restrict ourselves to the proper patches of normal calibrated images the median is only 2.58 dE_ab! Wilcoxon sum-rank testing (p < 0.05) between uncalibrated normal images and calibrated normal images with proper squares were equal to 0 demonstrating a highly significant improvement of reproducibility. In the second experiment, the reproducibility of the chart detection during automatic calibration is presented using a probability distribution of dE_ab errors between 2 measurements of the same ROI. CONCLUSION: The investigators proposed an automatic colour calibration algorithm that ensures reproducible colour content of digital images. Evidence was provided that images taken with commercially available digital cameras can be calibrated independently of any camera settings and illumination features

    Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources.</p> <p>Methods</p> <p>This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins <it>Maackia Amurensis </it>(MAA) I, and II, and <it>Sambucus Nigra </it>(SNA). Furthermore, the predilection sites of swine influenza virus (SIV) subtypes H1N1 and H1N2 as well as avian influenza virus (AIV) subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods.</p> <p>Results</p> <p>SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0%) at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas.</p> <p>Conclusions</p> <p>A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species.</p

    Pyoderma gangrenosum – a review

    Get PDF
    Pyoderma gangrenosum (PG) is a rare noninfectious neutrophilic dermatosis. Clinically it starts with sterile pustules that rapidly progress and turn into painful ulcers of variable depth and size with undermined violaceous borders. The legs are most commonly affected but other parts of the skin and mucous membranes may also be involved. Course can be mild or malignant, chronic or relapsing with remarkable morbidity. In many cases PG is associated with an underlying disease, most commonly inflammatory bowel disease, rheumatic or haematological disease and malignancy. Diagnosis of PG is based on history of an underlying disease, typical clinical presentation, histopathology, and exclusion of other diseases that would lead to a similar appearance. The peak of incidence occurs between the ages of 20 to 50 years with women being more often affected than men. Aetiology has not been clearly determined yet. The treatment of PG is a challenge. Randomized, double-blinded prospective multicenter trials for PG are not available. The best documented treatments are systemic corticosteroids and ciclosporin A. Combinations of steroids with cytotoxic drugs are used in resistant cases. The combination of steroids with sulfa drugs or immunosuppressants has been used as steroid-sparing modalities. Anti-tumor necrosis alpha therapy in Crohn's disease showed a rapid response of PG. Skin transplants and the application of bioengineered skin is useful in selected cases as a complement to the immunosuppressive treatment. Topical therapy with modern wound dressings is useful to minimize pain and the risk of secondary infections. Despite recent advances in therapy, the prognosis of PG remains unpredictable
    • …
    corecore