2,988 research outputs found

    Stress distribution and the fragility of supercooled melts

    Full text link
    We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ\sigma of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.Comment: 11 pages, 5 figures, Final version published in J Phys Chem

    Rapid sodium periodate cleavage of an unnatural amino acid enables unmasking of a highly reactive α-oxo aldehyde for protein bioconjugation

    Get PDF
    The α-oxo aldehyde is a highly reactive aldehyde for which many protein bioconjugation strategies exist. Here, we explore the genetic incorporation of a threonine-lysine dipeptide into proteins, harbouring a “masked” α-oxo aldehyde that is rapidly unveiled in four minutes. The reactive aldehyde could undergo site-specific protein modification by SPANC ligation

    Gauge-invariant magnetic perturbations in perfect-fluid cosmologies

    Get PDF
    We develop further our extension of the Ellis-Bruni covariant and gauge-invariant formalism to the general relativistic treatment of density perturbations in the presence of cosmological magnetic fields. We present detailed analysis of the kinematical and dynamical behaviour of perturbed magnetized FRW cosmologies containing fluid with non-zero pressure. We study the magnetohydrodynamical effects on the growth of density irregularities during the radiation era. Solutions are found for the evolution of density inhomogeneities on small and large scales in the presence of pressure, and some new physical effects are identified.Comment: Revised version (some minor changes - few equations added). 26 pages. No figures. To appear in Classical and Quantum Gravit

    Phase diagrams of correlated electrons: systematic corrections to the mean field theory

    Full text link
    Perturbative corrections to the mean field theory for particle-hole instabilities of interacting electron systems are computed within a scheme which is equivalent to the recently developed variational approach to the Kohn-Luttinger superconductivity. This enables an unbiased comparison of particle-particle and particle-hole instabilities within the same approximation scheme. A spin-rotation invariant formulation for the particle-hole instabilities in the triplet channel is developed. The method is applied to the phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable close to half filling. However, the latter phase is confined to an extremely narrow interval of densities and away from the singular filling, d-wave superconducting instability dominates

    Searching for Earth analogues around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar Neighbourhood

    Full text link
    The chemical composition of Earth's atmosphere has undergone substantial evolution over the course of its history. It is possible, even likely, that terrestrial planets in other planetary systems have undergone similar changes; consequently, the age distribution of nearby stars is an important consideration in designing surveys for Earth-analogues. Valenti & Fischer (2005) provide age and metallicity estimates for 1039 FGK dwarfs in the Solar Neighbourhood. Using the Hipparcos catalogue as a reference to calibrate potential biases, we have extracted volume-limited samples of nearby stars from the Valenti-Fischer dataset. Unlike other recent investigations, our analysis shows clear evidence for an age-metallicity relation in the local disk, albeit with substantial dispersion at any epoch. The mean metallicity increases from -0.3 dex at a lookback time of ~10 Gyrs to +0.15 dex at the present day. Supplementing the Valenti-Fischer measurements with literature data to give a complete volume-limited sample, the age distribution of nearby FGK dwarfs is broadly consistent with a uniform star-formation rate over the history of the Galactic disk. In striking contrast, most stars known to have planetary companions are younger than 5 Gyrs; however, stars with planetary companions within 0.4 AU have a significantly flatter age distribution, indicating that those systems are stable on timescales of many Gyrs. Several of the older, lower metallicity host stars have enhanced [alpha/Fe] ratios, implying membership of the thick disk. If the frequency of terrestrial planets is also correlated with stellar metallicity, then the median age of such planetary system is likely to be ~3 Gyrs. We discuss the implications of this hypothesis in designing searches for Earth analogues among the nearby stars.Comment: Accepted for publication in Ap
    corecore