32,610 research outputs found

    Strong disorder renormalization group on fractal lattices: Heisenberg models and magnetoresistive effects in tight binding models

    Full text link
    We use a numerical implementation of the strong disorder renormalization group (RG) method to study the low-energy fixed points of random Heisenberg and tight-binding models on different types of fractal lattices. For the Heisenberg model new types of infinite disorder and strong disorder fixed points are found. For the tight-binding model we add an orbital magnetic field and use both diagonal and off-diagonal disorder. For this model besides the gap spectra we study also the fraction of frozen sites, the correlation function, the persistent current and the two-terminal current. The lattices with an even number of sites around each elementary plaquette show a dominant ϕ0=h/e\phi_0=h/e periodicity. The lattices with an odd number of sites around each elementary plaquette show a dominant ϕ0/2\phi_0/2 periodicity at vanishing diagonal disorder, with a positive weak localization-like magnetoconductance at infinite disorder fixed points. The magnetoconductance with both diagonal and off-diagonal disorder depends on the symmetry of the distribution of on-site energies.Comment: 19 pages, 20 figure

    A model of inversion of DNA charge by a positive polymer: fractionization of the polymer charge

    Full text link
    Charge inversion of a DNA double helix by an oppositely charged flexible polyelectrolyte (PE) is considered. We assume that, in the neutral state of the DNA-PE complex, each of the DNA charges is locally compensated by a PE charge. When an additional PE molecule is adsorbed by DNA, its charge gets fractionized into monomer charges of defects (tails and arches) on the background of the perfectly neutralized DNA. These charges spread all over the DNA eliminating the self-energy of PE. This fractionization mechanism leads to a substantial inversion of the DNA charge, a phenomenon which is widely used for gene delivery.Comment: 4 pages, 2 figures. Improved figures and various corrections to tex

    The Higgs Sector on a Two-Sheeted Space Time

    Get PDF
    We present a general formalism based on the framework of non-commutative geometry, suitable to the study the standard model of electroweak interactions, as well as that of more general gauge theories. Left- and right-handed chiral fields are assigned to two different sheets of space-time (a discretized version of Kaluza-Klein theory). Scalar Higgs fields find themselves treated on the same footing as the gauge fields, resulting in spontaneous symmetry breaking in a natural and predictable way. We first apply the formalism to the Standard Model, where one can predict the Higgs mass and the top Yukawa coupling. We then study the left-right symmetric model, where we show that this framework imposes constraints on the type and coefficients of terms appearing in the Higgs potential.Comment: 24 pages, uses revtex

    Intrinsic Domain Wall Resistance in Ferromagnetic Semiconductors

    Full text link
    Transport through zincblende magnetic semiconductors with magnetic domain walls is studied theoretically. We show that these magnetic domain walls have an intrinsic resistance due to the spin-orbit interaction. The intrinsic resistance is independent of the domain wall shape and width when the latter is larger than the Fermi wavelength. For typical parameters, the intrinsic domain wall resistance is comparable to the Sharvin resistance and should be experimentally measurable.Comment: Final versio

    A profiling analysis of contributions of cigarette smoking, dietary calcium intakes, and physical activity to fragility fracture in the elderly

    Get PDF
    Fragility fracture and bone mineral density (BMD) are influenced by common and modifiable lifestyle factors. In this study, we sought to define the contribution of lifestyle factors to fracture risk by using a profiling approach. The study involved 1683 women and 1010 men (50+ years old, followed up for up to 20 years). The incidence of new fractures was ascertained by X-ray reports. A “lifestyle risk score” (LRS) was derived as the weighted sum of effects of dietary calcium intake, physical activity index, and cigarette smoking. Each individual had a unique LRS, with higher scores being associated with a healthier lifestyle. Baseline values of lifestyle factors were assessed. In either men or women, individuals with a fracture had a significantly lower age-adjusted LRS than those without a fracture. In men, each unit lower in LRS was associated with a 66% increase in the risk of total fracture (non-adjusted hazard ratio [HR] 1.66; 95% CI, 1.26 to 2.20) and still significant after adjusting for age, weight or BMD. However, in women, the association was uncertain (HR 1.30; 95% CI, 1.11 to 1.53). These data suggest that unhealthy lifestyle habits are associated with an increased risk of fracture in men, but not in women, and that the association is mediated by BMD

    Capturing natural-colour 3D models of insects for species discovery

    Full text link
    Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3mm to 30mm in length. Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control.Comment: 24 pages, 17 figures, PLOS ONE journa

    Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators

    Get PDF
    Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mechanical deformations couple. As the electrons in graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can be used for sensitive displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered as well as disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure

    On the predictions for diffusion-driven evaporation of sessile droplets with interface cooling

    Get PDF
    The diffusion-driven evaporation of sessile droplets from planar surfaces is influenced by cooling at the air-liquid interface. Here, corrections to the available models for predicting the evaporation process are presented. The mass conservation for diffusion-driven evaporation is resolved by considering the effect of interface cooling on the change in density of saturated vapour along the liquid-vapour interface of sessile droplets. Corrections to the predictions for the spatial distribution of vapour density around a sessile droplet and the evaporative flux of vapour at the interface are obtained. The classical models are recovered from the new predictions if interface cooling is negligible. Comparison between the new and classical predictions for the local surface evaporative flux is obtained using the literature data. Our analysis shows a significant effect of interface cooling which should be considered in predicting diffusion-driven evaporation of sessile droplets on planar surfaces

    Pre-corneal tear film thickness in humans measured with a novel technique.

    Get PDF
    PurposeThe purpose of this work was to gather preliminary data in normals and dry eye subjects, using a new, non-invasive imaging platform to measure the thickness of pre-corneal tear film.MethodsHuman subjects were screened for dry eye and classified as dry or normal. Tear film thickness over the inferior paracentral cornea was measured using laser illumination and a complementary metal-oxide-semiconductor (CMOS) camera. A previously developed mathematical model was used to calculate the thickness of the tear film by applying the principle of spatial auto-correlation function (ACF).ResultsMean tear film thickness values (±SD) were 3.05 μm (0.20) and 2.48 μm (0.32) on the initial visit for normals (n=18) and dry eye subjects (n=22), respectively, and were significantly different (p<0.001, 2-sample t-test). Repeatability was good between visit 1 and 2 for normals (intraclass correlation coefficient [ICC]=0.935) and dry eye subjects (ICC=0.950). Tear film thickness increased above baseline for the dry eye subjects following viscous drop instillation and remained significantly elevated for up to approximately 32 min (n=20; p<0.05 until 32 min; general linear mixed model and Dunnett's tests).ConclusionsThis technique for imaging the ocular surface appears to provide tear thickness values in agreement with other non-invasive methods. Moreover, the technique can differentiate between normal and dry eye patient types
    corecore