2,302 research outputs found

    Strong evidence for nucleon resonances near 1900 MeV

    Get PDF
    Data on the reaction γp → KþΛ from the CLAS experiments are used to derive the leading multipoles, E0þ, M1−, E1þ, and M1þ, from the production threshold to 2180 MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel L þ P model that allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photoinduced reactions within the Bonn-Gatchina partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin parity JP ¼ 1=2−, 1=2þ, and 3=2þ in the region at about 1.9 Ge

    Discovery of spatial periodicities in a coronal loop using automated edge-tracking algorithms

    Get PDF
    A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. Applying this technique to TRACE data, obtained using the 171 Ã… filter on 1998 July 14, we detect a coronal loop undergoing a 270 s kink-mode oscillation, as previously found by Aschwanden et al. However, we also detect flare-induced, and previously unnoticed, spatial periodicities on a scale of 3500 km, which occur along the coronal loop edge. Furthermore, we establish a reduction in oscillatory power for these spatial periodicities of 45% over a 222 s interval. We relate the reduction in detected oscillatory power to the physical damping of these loop-top oscillations

    Microbial contamination of laboratory constructed removable orthodontic appliances

    Get PDF

    Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

    Get PDF
    OBJECTIVE: This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness. BACKGROUND: Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice. METHOD: We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or all of the postural reflexes either in Earth's gravity or in microgravitational environments. Studies testing the function of each postural component, as well as those discussing postural reflex interactions, were also included in this review. DISCUSSION: It is quite apparent from the indexed literature we searched that posture is largely maintained by reflexive, involuntary control. While reflexive components for postural control are found in skin and joint receptors, somatic graviceptors, and baroreceptors throughout the body, much of the reflexive postural control mechanisms are housed, or occur, within the head and neck region primarily. We suggest that the postural reflexes may function in a hierarchical fashion. This hierarchy may well be based on the gravity-dependent or gravity-independent nature of each postural reflex. Some or all of these postural reflexes may contribute to the development of a postural body scheme, a conceptual internal representation of the external environment under normal gravity. This model may be the framework through which the postural reflexes anticipate and adapt to new gravitational environments. CONCLUSION: Visual and vestibular input, as well as joint and soft tissue mechanoreceptors, are major players in the regulation of static upright posture. Each of these input sources detects and responds to specific types of postural stimulus and perturbations, and each region has specific pathways by which it communicates with other postural reflexes, as well as higher central nervous system structures. This review of the postural reflex structures and mechanisms adds to the growing body of posture rehabilitation literature relating specifically to chiropractic treatment. Chiropractic interest in these reflexes may enhance the ability of chiropractic physicians to treat and correct global spine and posture disorders. With the knowledge and understanding of these postural reflexes, chiropractors can evaluate spinal configurations not only from a segmental perspective, but can also determine how spinal dysfunction may be the ultimate consequence of maintaining an upright posture in the presence of other postural deficits. These perspectives need to be explored in more detail

    The Interpersonal Style and Complementarity Between Crisis Negotiators and Forensic Inpatients

    Get PDF
    Previous negotiation research has explored the interaction and communication between crisis negotiators and perpetrators. A crisis negotiator attempts to resolve a critical incident through negotiation with an individual, or group of persons in crisis. The purpose of this study was to establish the interpersonal style of crisis negotiators and complementarity of the interpersonal interaction between them and forensic inpatients. Crisis negotiators, clinical workers and students (n = 90) used the Check List of Interpersonal Transactions-Revised (CLOIT-R) to identify interpersonal style, along with eight vignettes detailing interpersonal styles. Crisis negotiators were most likely to have a friendly interpersonal style compared to the other non-trained groups. Complementarity theory was not exclusively supported as submissive individuals did not show optimistic judgments in working with dominant forensic inpatients and vice versa. Exploratory analysis revealed that dominant crisis negotiators were optimistic in working with forensic inpatients with a dominant interpersonal style. This study provides insight into the area of interpersonal complementarity of crisis negotiators and forensic inpatients. Whilst further research is required, a potential new finding was established, with significant ‘similarity’ found when dominant crisis negotiators are asked to work with dominant forensic inpatients

    Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: evidence towards its use as a tool to study Earth's system interactions

    Get PDF
    This paper describes the validation of the SimSphere SVAT (Soil–Vegetation–Atmosphere Transfer) model conducted at a range of US and Australian ecosystem types. Specific focus was given to examining the models' ability in predicting shortwave incoming solar radiation (Rg), net radiation (Rnet), latent heat (LE), sensible heat (H), air temperature at 1.3 m (Tair 1.3 m) and air temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from eight sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. Overall, results showed a good agreement between the model predictions and the in situ measurements, particularly so for the Rg, Rnet, Tair 1.3 m and Tair 50 m parameters. The simulated Rg parameter exhibited a root mean square deviation (RMSD) within 25 % of the observed fluxes for 58 of the 72 selected days, whereas an RMSD within ~ 24 % of the observed fluxes was reported for the Rnet parameter for all days of study (RMSD = 58.69 W m−2). A systematic underestimation of Rg and Rnet (mean bias error (MBE) = −19.48 and −16.46 W m−2) was also found. Simulations for the Tair 1.3 m and Tair 50 m showed good agreement with the in situ observations, exhibiting RMSDs of 3.23 and 3.77 °C (within ~ 15 and ~ 18 % of the observed) for all days of analysis, respectively. Comparable, yet slightly less satisfactory simulation accuracies were exhibited for the H and LE parameters (RMSDs = 38.47 and 55.06 W m−2, ~ 34 and ~ 28 % of the observed). Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. The Nash–Sutcliffe efficiency index for all parameters ranges from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the most detailed evaluation of SimSphere done so far, and the first validation of it conducted in Australian ecosystem types. Findings are important and timely, given the expanding use of the model both as an educational and research tool today. This includes ongoing research by different space agencies examining its synergistic use with Earth observation data towards the development of global operational products

    Optical Interferometry of early-type stars with PAVO@CHARA. I. Fundamental stellar properties

    Full text link
    We present interferometric observations of 7 main-sequence and 3 giant stars with spectral types from B2 to F6 using the PAVO beam combiner at the CHARA array. We have directly determined the angular diameters for these objects with an average precision of 2.3%. We have also computed bolometric fluxes using available photometry in the visible and infrared wavelengths, as well as space-based ultraviolet spectroscopy. Combined with precise \textit{Hipparcos} parallaxes, we have derived a set of fundamental stellar properties including linear radius, luminosity and effective temperature. Fitting the latter to computed isochrone models, we have inferred masses and ages of the stars. The effective temperatures obtained are in good agreement (at a 3% level) with nearly-independent temperature estimations from spectroscopy. They validate recent sixth-order polynomial (B-V)-TeffT_\mathrm{eff} empirical relations \citep{Boyajian2012a}, but suggest that a more conservative third-order solution \citep{vanBelle2009} could adequately describe the (V-K)-TeffT_\mathrm{eff} relation for main-sequence stars of spectral type A0 and later. Finally, we have compared mass values obtained combining surface gravity with inferred stellar radius (\textit{gravity mass}) and as a result of the comparison of computed luminosity and temperature values with stellar evolutionary models (\textit{isochrone mass}). The strong discrepancy between isochrone and gravity mass obtained for one of the observed stars, γ\gamma\,Lyr, suggests that determination of the stellar atmosphere parameters should be revised.Comment: 13 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore