6,563 research outputs found

    Function-based Intersubject Alignment of Human Cortical Anatomy

    Get PDF
    Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigm—viewing static images of objects and faces—and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis

    Edge-weighting of gene expression graphs

    Get PDF
    In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed

    A Computational Approach to Multistationarity of Power-Law Kinetic Systems

    Full text link
    This paper presents a computational solution to determine if a chemical reaction network endowed with power-law kinetics (PLK system) has the capacity for multistationarity, i.e., whether there exist positive rate constants such that the corresponding differential equations admit multiple positive steady states within a stoichiometric class. The approach, which is called the "Multistationarity Algorithm for PLK systems" (MSA), combines (i) the extension of the "higher deficiency algorithm" of Ji and Feinberg for mass action to PLK systems with reactant-determined interactions, and (ii) a method that transforms any PLK system to a dynamically equivalent one with reactant-determined interactions. Using this algorithm, we obtain two new results: the monostationarity of a popular model of anaerobic yeast fermentation pathway, and the multistationarity of a global carbon cycle model with climate engineering, both in the generalized mass action format of biochemical systems theory. We also provide examples of the broader scope of our approach for deficiency one PLK systems in comparison to the extension of Feinberg's "deficiency one algorithm" to such systems

    Nonlinear Outcome of Gravitational Instability in Disks with Realistic Cooling

    Full text link
    We consider the nonlinear outcome of gravitational instability in optically thick disks with a realistic cooling function. We use a numerical model that is local, razor-thin, and unmagnetized. External illumination is ignored. Cooling is calculated from a one-zone model using analytic fits to low temperature Rosseland mean opacities. The model has two parameters: the initial surface density Sigma_0 and the rotation frequency Omega. We survey the parameter space and find: (1) The disk fragments when t_c,eff Omega = 1, where t_c,eff is an effective cooling time defined as the average internal energy of the model divided by the average cooling rate. This is consistent with earlier results that used a simplified cooling function. (2) The initial cooling time t_c0 or a uniform disk with Q = 1 can differ by orders of magnitude from t_c,eff in the nonlinear outcome. The difference is caused by sharp variations in the opacity with temperature. The condition t_c0 Omega = 1 therefore does not necessarily indicate where fragmentation will occur. (3) The largest difference between t_c,eff and t_c0 is near the opacity gap, where dust is absent and hydrogen is largely molecular. (4) In the limit of strong illumination the disk is isothermal; we find that an isothermal version of our model fragments for Q < 1.4. Finally, we discuss some physical processes not included in our model, and find that most are likely to make disks more susceptible to fragmentation. We conclude that disks with t_c,eff Omega < 1 do not exist.Comment: 30 pages, 12 figure

    ClaimChain: Improving the Security and Privacy of In-band Key Distribution for Messaging

    Get PDF
    The social demand for email end-to-end encryption is barely supported by mainstream service providers. Autocrypt is a new community-driven open specification for e-mail encryption that attempts to respond to this demand. In Autocrypt the encryption keys are attached directly to messages, and thus the encryption can be implemented by email clients without any collaboration of the providers. The decentralized nature of this in-band key distribution, however, makes it prone to man-in-the-middle attacks and can leak the social graph of users. To address this problem we introduce ClaimChain, a cryptographic construction for privacy-preserving authentication of public keys. Users store claims about their identities and keys, as well as their beliefs about others, in ClaimChains. These chains form authenticated decentralized repositories that enable users to prove the authenticity of both their keys and the keys of their contacts. ClaimChains are encrypted, and therefore protect the stored information, such as keys and contact identities, from prying eyes. At the same time, ClaimChain implements mechanisms to provide strong non-equivocation properties, discouraging malicious actors from distributing conflicting or inauthentic claims. We implemented ClaimChain and we show that it offers reasonable performance, low overhead, and authenticity guarantees.Comment: Appears in 2018 Workshop on Privacy in the Electronic Society (WPES'18
    corecore