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ABSTRACT
The social demand for email end-to-end encryption is barely sup-

ported bymainstream service providers. Autocrypt is a new commu-

nity-driven open specification for e-mail encryption that attempts

to respond to this demand. In Autocrypt the encryption keys are

attached directly to messages, and thus the encryption can be imple-

mented by email clients without any collaboration of the providers.

The decentralized nature of this in-band key distribution, however,

makes it prone to man-in-the-middle attacks and can leak the social

graph of users. To address this problem we introduce ClaimChain,

a cryptographic construction for privacy-preserving authentica-

tion of public keys. Users store claims about their identities and

keys, as well as their beliefs about others, in ClaimChains. These

chains form authenticated decentralized repositories that enable

users to prove the authenticity of both their keys and the keys of

their contacts. ClaimChains are encrypted, and therefore protect

the stored information, such as keys and contact identities, from

prying eyes. At the same time, ClaimChain implements mecha-

nisms to provide strong non-equivocation properties, discouraging

malicious actors from distributing conflicting or inauthentic claims.

We implemented ClaimChain and we show that it offers reasonable

performance, low overhead, and authenticity guarantees.
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1 INTRODUCTION
Following the Snowden revelations it became clear that, given the

dependence of citizens, governments, and corporations on elec-

tronic communications, there is a strong need for highly secure

end-to-end encrypted communications. That is, the content of com-

munications must not be accessed by third parties, so as to shield

them from mass surveillance systems, domestic or foreign. Yet, so

far we have only seen feeble and largely unsuccessful attempts by

mainstream service providers such as GMail and Yahoo to support

fully encrypted e-mail [1, 8, 13]. Only a few minor e-mail providers

embrace end-to-end encryption.
12

To fill this void, a recently launched community-driven initia-

tive, Autocrypt, is developing a new open specification for e-mail

encryption. The goal is to facilitate key handling by mail user

agents so that encryption can be deployed without the need for

1
https://mailfence.com

2
https://protonmail.com

collaboration of the service providers. The Autocrypt approach is

supported
3
by key e-mail clients such as Thunderbird+Enigmail,

K-9 mail, and Mailpile, as well as a new messaging application for

Android, DeltaChat.

Similarly to in-band PGP [24], Autocrypt embeds the encryption

keys into the e-mail messages, but uses pre-defined headers instead

of attachments. Furthermore, in the spirit of the PGP Web of Trust,

these headers also contain cross-references to the keys of other

users. The cross-references implicitly endorse the binding between

these keys and the corresponding user identities.

This decentralized approach alleviates the privacy problem of

centralized certification authorities, such as SKS Keyservers
4
for

PGP keys, which can observe users’ key look-ups, and thus can infer

their communication patterns. However, since no one has a global

view of all the bindings in Autocrypt’s decentralized approach, ma-

licious users or providers can supply different user-to-key bindings

to different recipients, effectively opening the doors to man-in-the-

middle attacks.

This attack, whereby Alice can show to Carol and Donald differ-

ent versions of Bob’s key tomanipulate encryption in her advantage,

is commonly known as equivocation. A solution to render equiv-

ocation detectable and accountable could be to use CONIKS [15].

However, CONIKS’ transparency logs are maintained by providers,

and thus the scheme is not compatible with the Autocrypt principle

of not requiring provider collaboration.

In this paper we present ClaimChain, a cryptographic construc-

tion that alleviates the authenticity and privacy problems of in-band

key distribution in the setting of Autocrypt.
5
Similarly to CONIKS,

ClaimChains consist of chained blocks. Instead of a global log, how-

ever, each user has their own ClaimChain that contains all the

information necessary to represent her claims about her own keys,

and her beliefs about other users’ keys, i.e., her cross-references.

Chaining of blocks enables tracking and authenticating the evolu-

tion of beliefs and keys. Cross-references enable users to combine

their contacts’ beliefs—represented by their ClaimChains—to estab-

lish evidence about the binding between identities and keys.

To address the privacy issues of the Web of Trust cross-reference

sharing model, ClaimChains use cryptographic access tokens to

provide fine-grained control on who is allowed to read which claims.

Moreover, ClaimChains’ claim encoding schemes make it hard to

3
https://github.com/autocrypt/autocrypt/blob/master/doc/install.rst

4
https://sks-keyservers.net

5
ClaimChains are currently being tested by the Autocrypt team (https://py-autocrypt.

readthedocs.io/en/latest/)
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infer how users’ beliefs change over time. Finally, ClaimChains

include mechanisms to reliably and efficiently prevent equivocation

within a block, and a mechanism to detect equivocation across

blocks. In doing so, ClaimChains ensure non-equivocation while

minimizing the leakage of users’ friendship networks.

We prove the security and privacy properties provided by Claim-

Chains. We also provide an implementation of ClaimChains and

show that it scales to accommodate the needs of large groups

at an acceptable overhead cost. We also simulate the usage of

ClaimChains for in-band key distribution using the Enron e-mail

dataset
6
in a privacy-preserving way: ClaimChain owners reveal

cross-references only if that does not leak more information about

their social graph than is already revealed by the e-mails them-

selves. We quantify the degree to which in-band key distribution

can protect communication. We show that ClaimChains improve

privacy, without diminishing considerably the ability to encrypt

e-mail, and enable the detection of incorrect key information. Our

main contributions are:

– We introduce ClaimChain, a cryptographic construction based

on authenticated data structures. ClaimChains store claims about

keys, thereby supporting key authentication in decentralized

environments in a secure and privacy-preserving way.

– We define the properties that a decentralized and privacy-pre-

serving key distribution system should offer and we formally

model them for ClaimChain.

– We show that owners cannot equivocate about contact keys

within blocks. Moreover, we provide a novel mechanism that

enables ClaimChain owners to prove that they have not equiv-

ocated across different blocks about a particular contact key.

Unlike other transparency-backed solutions [15], auditing the

consistency of contact keys is possible without revealing their

actual values in the ClaimChain history.

– We provide an implementation of ClaimChain and show that its

computation and bandwidth requirements are reasonable and

within reach of modern computers and networks.

– We evaluate the effectiveness of decentralized key distribution on

a real e-mail dataset. We show that selective privacy-preserving

distribution can be almost as effective as broadcasting all known

keys, although total encryption is difficult to achieve.

2 PROBLEM STATEMENT AND GOALS
We assume a messaging system in which users embed their crypto-

graphic keys in-band, i.e., into the messages themselves or into the

message headers, as in Autocrypt. These keys are used to provide

message confidentiality using opportunistic encryption [5]. That

is, the communication is encrypted when users know each others’

keys, but falls back to plaintext when they do not.

Sending keys as part of message headers results in two problems.

First, in terms of privacy, adding such headers reveals users’ so-

cial ties. Second, in terms of security, man-in-the-middle attackers

can modify the header contents, since they are not authenticated.

Moreover, malicious users can equivocate about others’ keys.

Design goals.We assume that all actors in the system, users and

providers, may act maliciously. Our goal is to design a data struc-

ture that can store the binding between keys and identities, and is

6
http://www.cs.cmu.edu/~enron/

suitable for integrating with in-band key distribution. The purpose

of the structure is to support key validation, i.e., help users estab-

lish the authenticity of user-key bindings, as long as some users in

the system are honest. Furthermore, it must protect users’ privacy

without relying on centralized parties.

More concretely, we aim at providing the following properties.

First, the structure must guarantee the integrity and authenticity of

identity-key bindings, i.e., it should not be possible to replace or

inject bindings without being detected. Second, we want to preserve

the privacy of cross-referenced information and the privacy of the

social graph. These properties ensure that only authorized users

can access the key material in the structure and the identities of

the bindings being distributed. Third, the structure must prevent

users from equivocating other users with respect to the identity-key

bindings that they share. That is, a user Owen should not be able

to show to Alice and Bob different versions of a Charlie’s key, even

if he withdraws Alice’s access to see Charlie’s keys. In the latter

case if Alice ever regains access, she must be able to detect Owen’s

misbehavior. Finally, our construction should not entail significant

computational or communication overhead for the end users and

providers to enable adoption at large scale.

Non-goals. In-band key distribution cannot ensure full availability

of public encryption keys. The keys of one or more recipients may

not be available to a sender at a time of sending a message, and thus,

because of the opportunistic encryption operation, the message

would be sent in the clear. We are therefore not concerned with

ensuring 100% availability of keys. Instead, our goal is to secure the

keys that are distributed without harming privacy. If guaranteeing

encrypted communication is absolutely necessary, parties must

exchange keys in a reliable way, e.g. through a centralized service

or an out-of-band mechanism.

Furthermore, throughout this paper we consider that users have

only one identity, and use one and only one structure to store

key bindings of their contacts. If a user wishes to have different

identities, she must create one structure per identity.

3 CLAIMCHAIN DESIGN
In this section we introduce ClaimChain, a structure to store key

bindings in a secure and privacy-friendly manner.

3.1 Cryptographic preliminaries and notation
We denote sampling uniformly at random from a set X as x ←$X ,

and the assignment of an evaluation of a function f (x) to y as

y ← f (x), regardless of whether f is probabilistic or deterministic.

We denote concatenation of strings by ∥.
Let λ be the security parameter. ClaimChain relies on the fol-

lowing standard cryptographic primitives. Let Enc(k,m) 7→ c and
Dec(k, c) denote an IND-CPA secure symmetric authenticated en-

cryption scheme. ClaimChain uses an existentially unforgeable

signature given by the algorithms Sig.KeyGen(1λ) returning the

keypair (sksig, pksig), Sign(sksig,m) returning a signature σ , and the
verification function Sig.Verify(pk

sig
,σ ,m) 7→ {⊤,⊥}. We write

DH.KeyGen(1λ) for the generation of a Diffie-Hellman (DH) key-

pair (skDH, pkDH) using which we can non-interatively compute

2
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Figure 1: ClaimChain block structure

the shared DH key s ∈ {0, 1}∗ using SharedSecret(skDH, pkR
DH
). Fi-

nally, let H be a cryptographic hash function from which we derive

a family of hash functions Hi : {0, 1}∗ → {0, 1}2λ , i > 0.

All schemes use a cyclic group G of prime order q generated by

д. We write Zq for the integers modulo q. Moreover, we assume

the existence of a cryptographic hash function HG : {0, 1}∗ → G
that hashes strings to group elements, and a hash function Hq :

{0, 1}∗ → Zq that hashes strings to the elements of Zq .
ClaimChains also require an information-theoretically hiding

commitment scheme Commit(r ,m) that commits to values m ∈
Zq given a randomizer r ∈ Zq . We instantiate this scheme using

Pedersen’s commitment scheme [19]. Let д1,д2 ∈ G be random

generators such that the discrete logarithms of д1 and д2 with

respect to each other are unknown. Then, Commit(r ,m) = дr
1
дm

2
.

ClaimChains use standard zero-knowledge proofs of knowledge,

and in particular Schnorr’s proof of knowledge of discrete loga-

rithms [21], to prove correctness of claims. We use the Fiat-Shamir

heuristic [6] to derive non-interactive signature proofs of knowl-

edge. For example, we write:

SPK

{
(r ,m) : C = дr

1
дm

2

}
(t)

to denote the non-interactive signature proof of knowledge on

a random string t for which the prover knows the commitment

opening (r ,m). To focus on the semantics of the proof, we write

SPK {(r ,m) : C = Commit(r ,m)} (t)

instead, to denote the same proof.

Finally, ClaimChains use a verifiable random function (VRF) [7,

16], given by the algorithms VRF.KeyGen and VRF.Eval. The func-

tion VRF.KeyGen(1λ) returns a keypair (skVRF, pkVRF) = (skVRF,
дskVRF ). Then, h = VRF.Eval(skVRF,m) = HG(m)skVRF is the VRF

of the valuem. Users prove the that h was correctly computed by

constructing the proof

SPK

{
(skVRF) : pk

VRF
= дskVRF ∧ h = VRF.Eval(skVRF,m)

}
().

The properties of VRF hashes are similar to that of cryptographic

hashes: uniqueness of h for a given message and private key, colli-

sion resistance, and pseudorandomness (assuming no access to the

corresponding proof) [18].

3.2 Overview
We consider that each user has a state made of information about

herself and her beliefs about other users’ states. At a given point in

time a users’ state is represented as a set of statements, called claims.

Claims can be of two kinds. The first type of claim refers to a user’s

own state. In particular, these may be statements on the user’s

encryption keys, identity information (screen name, real name, or

e-mail), or other cryptographic material such as verification keys to

support digital signatures. The second type of claims, we call them

cross-references, refer to other users’ states. A claim owner creates

a cross-reference to endorse the referenced user’s state as being

authoritative, i.e., a cross-reference indicates the owner’s belief that

the self key material found in those users’ state is correct. A user’s

state evolves over time as she rotates her keys and observes the

evolution of others’ states. She stores snapshots of her state in a

cryptographic data structure called a ClaimChain.

The core element of a ClaimChain is a block. A block includes

all claims that the owner endorses at the time when she creates the

block, i.e., a block is a snapshot of the owner’s state. Blocks form

a chain. A block contains a payload X , a pointer to the previous

block ptr , and a digital signature σi on the payload and the pointer.

See Figure 1. The payload of the previous block Xi−1 contains the

verification key pk
(i−1)
sig

for the private key sk
(i−1)
sig

that signs σi .

We now describe each of the block components in detail.

The payload Xi has the following content (see Figure 1, left):

– Block index. The block’s position in the chain. The index of the

genesis block is 0.

– Nonce. A fresh cryptographic nonce used to ‘salt’ all crypto-

graphic operations within the block. It ensures that the informa-

tion across blocks is not linkable.

– Metadata. The current signature verification key of the owner

pk
sig
, that is used to authenticate the next block of the Claim-

Chain; the current key pk
VRF

to compute a verifiable random

function used to support non-equivocation; and a Diffie-Hellman

key pk
DH

used to provide claim privacy.

– Public data. Application-specific data the owner wishes to make

publicly visible. For in-band key distribution we set this to the

owner’s self-claim on her current public encryption key.

– Block map. A high-integrity key-value map storing the claims,

as well as access tokens that express access-control rights. This

map has two core properties: i) a key can only be resolved to a

single value, and ii) it enables the generation and verification

of efficient proofs of inclusion of claims or access tokens. We

implement the map using unique-resolution key-value Merkle

trees, explained in more detail in Section 3.3. For our use case

the map only contains cross-references.

The signature σi = Sign(sk(i−1)
sig
, (Xi , ptri )) authenticates the cur-

rent block. A block Bi must have a valid signature under the verifi-

cation key indicated in the payload of the previous block Bi−1. The

genesis block of a ClaimChain is ‘self-signed’. The corresponding

initial public signing key is included in the initial payload. Each

block in the chain contains enough information to authenticate

past blocks as being part of the chain, validate the next block, and,

by transitivity, all future blocks as being valid updates. Therefore,

3



a user with access to a block of a chain that she believes is authori-

tative, can both audit past states of the chain, and authenticate the

validity of newer blocks.

3.3 Low-level operations
We now describe how we implement claims and access tokens, and

how they are combined into the block map.

Claims. We model claims as a tuple composed of a label l and a

body m. The label is a well-known identifier associated with the

identity of the user to whom the claim refers. The body is the state

of that user at the time when the claim is generated, represented

as the latest block of this user’s ClaimChain. For instance, a claim

(‘bob@gmail.com’, B) represents the ClaimChain owner’s belief

that the current state of the user associated with this Gmail account

is represented by the block B.
For privacy reasons, claims in a ClaimChain are encrypted. Thus,

they cannot be found directly by other users. To enable efficient

search for concrete claims within a ClaimChain block, we introduce

a lookup key, or index, i for each claim.

We illustrate the encoding of claims in procedure EncClaim, see

Figure 2. Consider a claim (l ,m) that is to be included in a block.

We first compute the unique VRF of its label and derive the claim’s

lookup key i [lines 2–3]. Note that the computation of h includes a

per-block nonce to ensure that the lookup keys for a given claim

label look different across blocks, and therefore no patterns can be

inferred from their appearance.

Recall that VRF hashes are unique. We use them to derive lookup

keys to ensure that, given a label, all users retrieve the same claim,

effectively supporting non-equivocation within a block. This use

of VRFs is inspired by CONIKS [15]. We also include additional

cryptographic elements in our encoded claims in order to obtain a

stronger non-equivocation property than CONIKS. Specifically, we

guarantee that equivocation is detectable across blocks without the

need for key owners to intervene. The need for a detection mech-

anism stems from the fact that ClaimChain owners can give and

withdraw access to claims at will. Thus, they can try to equivocate

others by giving them access to different information in different

blocks. To make this misbehaviour detectable we provide Claim-

Chain owners with the ability to prove statements about claims that

other users cannot see. This way, if a proof cannot be completed,

equivocation is revealed (see Section 4.1 for more details).

To prove statements on claim contents without revealing them,

we commit to the claim bodym [line 4]. Moreover, we construct

a non-interactive proof π on kπ proving that the VRF h is correct

and that the commitment com commits to m [lines 5–6]. When

decoding a claim, users verify the proof π . The proof verification
key kπ ensures that only authorized users can verify this proof.

Once π is computed, we encryptm and π with a random key k
[line 7]. Finally, the claim encoding consists of this ciphertext and

the commitment com: c = Enc(k,π ∥ m) ∥ com.
The binding property of the commitment com and the validation

provided by the proof π also ensure that all users with access to an

encoded claim c must recover the same claim bodym. This makes

this encoding scheme an instance of committing, or non-deniable,

encryption [9]. Hence, a malicious owner can not equivocate by

supplying two different claim encryption keys to different users.

The procedure DecClaim, see Figure 2, describes the decoding

of a claim. It takes as input the encryption key k , the VRF hash h,
and the proof verification key kπ from the owner (see below). Then,

users can decrypt the ciphertext using k [lines 2–3]; and verify the

claim proof π , which includes the verification of the correctness of

the VRF hash h and of the commitment com [lines 4–6].

Our claim encoding scheme offers four distinct security advan-

tages. First, the use of the VRF ensures that lookup keys can only

be produced by the owner of the chain, which as we describe below

supports access control. Second, the lookup key is unique for a

given label, and thus can be used to support non-equivocation for

claims within a block. Third, the lookup key i and claim encoding

c leak no information about the claim label or body. Fourth, it sup-

ports zero-knowledge proofs about claim contents, which enables

the detection of equivocation across blocks.

Access capabilities. ClaimChain owners create cryptographic ac-

cess tokens called capabilities to ensure that only authorized users

can access specific claims. A single capability grants one authorized

user access to one claim. We call the authorized users readers.

An encoded capability is an encryption of all the values needed

to obtain a claim lookup key and decode the corresponding claim:

the encryption key k , the VRF hash h, and the proof verification key

kπ . We encrypt these using a key derived from a shared secret s be-
tween the chain owner and the reader. Similarly to claims, encoded

capabilities have an associated lookup key icap, and a body cap.

The procedure EncCap, see Figure 2, describes how to encode

capabilities. First, it computes the shared Diffie-Hellman secret s
using the owner’s private DH key skDH and reader’s public DH key

pk
R
DH

[line 2]. The latter is available in the metadata of the reader’s

ClaimChain.We use the secret s to derive both the capability lookup
key icap [line 3], and the capability encryption key kcap [line 4].

Then we encrypt the valuesh, k , and kπ using the key kcap to obtain
the capability encoding [line 5]: cap = Enc(kcap,h ∥ k ∥ kπ ).

Chain owners store the encoded claim c under the lookup key i
in the block map. Similarly, they store the encoded capability cap

under the lookup key icap. To find a capability corresponding to a

claim with label l in a ClaimChain block, a reader first computes

the lookup key icap for label l using the shared secret with the

ClaimChain owner. If the corresponding capability cap is in the

block, she decodes it using DecCap, see Figure 2. First, the reader

derives the shared secret s [line 2], and computes the capability

encryption key kcap using the claim label l [line 3]. She can then

decrypt cap using kcap [line 4], obtaining the label’s VRF hash

h, the encryption key k , and the proof verification key kπ . With

this information the reader can compute the claim’s lookup key

i = H1(h), find the claim, and decode it using DecClaim.

Blockmap. Encoded claims and capabilities are stored in the block

map. We implement the block map using a unique-resolution key-

value Merkle tree. Unlike a standard Merkle tree that implements

an authenticated set data structure, a key-value tree is an instance

of an authenticated dictionary [4]. It can be efficiently queried for

a value that corresponds to a given lookup key. Our construction

is similar to that of a binary search tree: the intermediate nodes

contain pivots that define whether the querier should follow the

left child or a right child; the leaf nodes contain the values. The

construction allows queriers to be sure that retrieved values are

4



1: procedure EncClaim(skVRF, l ,m, nonce)
2: h← VRF.Eval(skVRF, l ∥ nonce)
3: i ← H1(h)
4: r ←$ Zq , com← Commit(r ,Hq (m))
5: kπ ←$ {0, 1}λ
6: π ← SPK{(skVRF, r ) : pk

VRF
= дskVRF ∧

h = VRF.Eval(skVRF, l ∥ nonce) ∧
com = Commit(r ,Hq (m))}(kπ )

7: k ←$ {0, 1}λ , c ← Enc(k,π ∥ m) ∥ com
8: return r ,h,k,kπ , (i, c)
1: procedure EncCap(skDH, pkR

DH
, l ,h,k,kπ , nonce)

2: s ← SharedSecret(skDH, pkR
DH
)

3: icap← H3(s ∥ l ∥ nonce)
4: kcap← H4(s ∥ l ∥ nonce)
5: cap← Enc(kcap,h ∥ k ∥ kπ )
6: return (icap, cap)

1: procedure DecClaim(pkO
VRF
,h, l ,k,kπ , c, nonce)

2: c̄ ∥ com← c
3: π ∥ m← Dec(k, c̄)
4: ▷ Note the verification of π requires pk

O
VRF

, h, l , kπ , com,m, and nonce.

5: if π is not a valid proof then
6: return ⊥
7: returnm

1: procedure DecCap(skDH, pkO
DH
, l , cap, nonce)

2: s ← SharedSecret(skDH, pkO
DH
)

3: kcap← H4(s ∥ l ∥ nonce)
4: h ∥ k ∥ kπ ← Dec(kcap, cap)
5: i ← H1(h)
6: return i,h,k,kπ

Figure 2: Low-level ClaimChain operations

unique, i.e., there cannot exist any other leaf nodes that correspond

to the queried lookup key.We call this the unique resolution property.

We formally define the property in Experiment 1 and prove it in

Theorem 1 (both in Appendix A).We refer to Appendix A for further

details on the construction.

The unique-resolution property guarantees that for a given

lookup key i , respectively icap, there can only be one claim c , re-
spectively capability cap. The uniqueness of the VRF value h, the
property of the tree, and the commitment in the claim encoding,

ensures that a ClaimChain owner can not equivocate within a block.

We note that ClaimChain blocks only need to include the root

hash of the Merkle tree, not the whole tree. This is because our

Merkle tree construction allows to produce an inclusion proof for

items: a path from the root to the leaf node which contains the item.

Thus, providing others with this paths is enough to convince them

that the items are in the tree defined by the root in the block.

3.4 High-level operations
So far we have described how users can encode and decode claims.

We now outline how these claims can be included in a ClaimChain

and read from it. At a glance, owners create blocks with a set of en-

coded claims and corresponding encoded capabilities, and use them

to extend their ClaimChains. Any user can validate the authentic-

ity and integrity of the chain. Moreover, readers can retrieve the

claims they are authorized to read. Section 4 illustrates how these

operations can be used in the context of in-band key distribution.

Content-addressable store.ClaimChain owners store their blocks

and trees in mutable content-addressable stores. These are key-value

stores where the key must be the hash of the corresponding value.

They are a good fit for ClaimChains because i) it is easy to verify

their integrity by checking that all keys are the hashes of the respec-

tive objects they map to; and ii) an incomplete store cannot lead to

an erroneous decision on the authenticity, inclusion or exclusion

of any block or tree node. The store supports two operations:

– Put(v). Record the value v in the store.

– Get(h). Return v such that h = H (v), if present in the store.

Extending a chain.Whenever an owner decides to add new claims

to her ClaimChain she uses the procedure ExtendChain in Figure 3.

This procedure takes as input the public application data, a set

of claims (lj ,mj ) to add to the block, an access control set acs

consisting of the authorized reader-label pairs for these claims,

the cryptographic keys necessary to create the block (keypairs for

signatures, DH key exchange, and VRF), as well as the previous

signing key sk
′
sig

included in the previous block, the pointer ptr to

that block, and, finally, the user’s store.

To create a block the user first generates a random nonce that

is used for all encoding operations [step 1]. She then encodes

all the claims and capabilities [steps 2–3]. The set S of encoded

values and their respective lookup keys are used to construct a

Merkle tree with root hash MTR, as described in Algorithm 1 in

Appendix A [steps 4–5]. She then constructs the block payload X
using the nonce, the block metadata containing the public keys

(pk
DH
, pk

sig
, pk

VRF
), the public application data, and the rootMTR

of the Merkle tree. She signs the payload X and the pointer ptr to

the previous block using the previous signing key sk
′
sig

(see Fig-

ure 1) [step 6]. Finally, she puts the obtained block, B = (X , ptr,σ ),
into the content-addressable store [step 8].

Chain validation. Readers must always validate that new blocks

correctly extend the chain that they have previously seen. To do so,

users run the procedure ValidateBlocks, see Figure 4. The input

to this procedure is a list of blocks Bi , where B0 is the last validated

block, and B1 through Bt are the new blocks to be validated. For

each new block Bi the reader first checks if the block includes all

elements: the payload, signature, and the pointer [step 1]. Next, she

retrieves the public key pk
sig

from the preceding block Bi−1 and

verifies the signature in the block Bi [steps 2–3]. This verifies the
authenticity of the chain. Finally, she verifies that the pointer in

the block Bi is a hash of the preceding block Bi−1, which verifies

the integrity of the chain [step 4].
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procedure ExtendChain(data, claims, acs, keys, ptr, store)

(1) Randomly generate a λ-bit nonce nonce.
(2) For each claim (l ,m) in claims:

r ,h,k,kπ , (i, c) ← EncClaim(skVRF, l ,m, nonce),
Additionally, record each randomizer r .

(3) For each tuple (pkR
DH
, l) in acs, encode a capability:

(icap, cap) ← EncCap(skDH, pkRDH, l ,h,k,kπ , nonce)
(4) Construct a set S containing the encoded claims and ca-

pabilities.

(5) Build a unique-resolution key-value Merkle tree from the

set of entries S :MTR← BuildTree(S, store).
(6) Compute the block

B ←
(
(X , ptr),σ = Sign(sk′

sig
, (X , ptr))

)
where X contains the nonce, MTR, the block metadata

(containing the public keys pk
DH
, pk

sig
, pk

VRF
), and the

public application data.

(7) Put the block B into the store using Put(B)
(8) return H (B).

procedure GetClaim(skDH, l , ptr, store)
(1) Get the block from the store: B ← Get(ptr).
(2) Retrieve owner’s public keys (pk

O
DH
, pkO

VRF
, pkO

sig
), the block’s

nonce nonce, and the block map hashMTR from block B.
(3) Compute the capability lookup key:

icap ← H3(s ∥ l ∥ nonce),

where s is the shared secret s = SharedSecret(skDH, pkO
DH
).

(4) Get the encoded capability from the tree:

cap←QueryTree(MTR, icap, store),
(5) Obtain the claim lookup key i , the VRF hash h, the claim

encryption key k , and the proof verification key kπ :

i,h,k,kπ ← DecCap(skDH, pkODH, l , cap, nonce)
(6) Get the encoded claim from the tree:

c ←QueryTree(MTR, i, store)
(7) Decode c and verify the correctness of the claim:

m ← DecClaim(pkO
VRF
, l ,h,k,kπ , c, nonce)

(8) If any of the lookups failed, return None. If the verification

failed, return ⊥. Otherwise, returnm.

Figure 3: Extending and querying ClaimChains

procedure ValidateBlocks({B0,B1,B2, ...,Bt })
For each i from 1 to t :

(1) Check that block Bi is of the form ((Xi , ptri ),σi ).
(2) Retrieve the public key pk

(i−1)
sig

from the block Bi−1.

(3) Verify Bi ’s signature σi using the previous block’s key:

Sig.Verify(pk(i−1)
sig
,σi , (Xi , ptri ))

(4) Verify that the hash chain construction is correct:

ptri = H (Bi−1)
Return ⊤ if all checks were successful, otherwise return ⊥.

Figure 4: Block validation

Retrieval of the claim by label.After having validated the Claim-

Chain of an owner, the reader can query it to retrieve claims of

interest using procedure GetClaim in Figure 3. This procedure

takes as input the reader’s private Diffie-Hellman key skDH, the

claim label l , a pointer to the latest block ptr and the owner’s store.

The reader retrieves the block, and parses it to get the block’s

nonce, the owner’s public keys, and the block map hash [steps 1–2].

She then derives the capability lookup key using the DH secret

shared with the owner [step 3], queries the block map to retrieve

the corresponding capability [step 4]. We refer to Algorithm 2 in

Appendix A for the details of the QueryTree algorithm. Next, she

runs the decoding procedure to obtain the claim lookup key i , the
VRF hash h, the claim encryption key k , and the proof verification

key kπ [steps 5]. She then obtains the claim encoding c by querying
the tree with the claim’s lookup key i [step 6]. Finally, the reader

decodes and verifies the encrypted claim using h, k , kπ [step 7].

3.5 Security and privacy properties
We now sketch why the ClaimChain design fulfills the security and

privacy objectives established in Section 2.

We note that authenticity and integrity are guaranteed through

the usage of signature and hash chains respectively. Signatures

guarantee that the information stored in a ClaimChain has been

added by the owner of the chain. The usage of cryptographic hash

functions for constructing the pointers between blocks guarantees

that tampering with the ClaimChain content will be detected.

Privacy. ClaimChains provide privacy of content and privacy of the

social graph. We capture these through the following properties:

– Capability-reader unlinkability. The adversary cannot determine

for which honest user a capability has been created.

– Claim privacy. The adversary cannot learn anything about the

labels and bodies of claims for which it does not have the corre-

sponding capabilities.

Informally, these properties are provided by ClaimChains be-

cause the adversary can neither derive the capability lookup key,

nor learn the contents of the encoded capability without the knowl-

edge of the shared secret used to encrypt the them. This implies

that an adversary without this key cannot read capabilities nor

learn to whom they are destined (capability-reader unlinkability).

Since the adversary cannot read the capability, it also does not learn

the VRF hash h required to compute the claim lookup key, nor the

claim encryption key k . Moreover, the pseudorandomness of the

VRF hash h ensures that the adversary cannot compute h without

the cooperation of the chain owner. Thus, the adversary cannot

check whether a particular claim is included in the block.

Following a similar reasoning, the adversary cannot learn the

content of a claim from its lookup key. Furthermore, the encoded
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claim c does not reveal anything about the claim, except its length.

Therefore, claim privacy holds, as long as all claims are of the same

length, or padded to the same length.

We formalize these properties in Experiments 2 and 3, and prove

them in Theorems 3 and 4 in Appendix B.

Non-equivocation. Our construction also prevents equivocation.

Specifically, it guarantees the following two properties:

– Intra-block non-equivocation.Within a given block, a ClaimChain

owner cannot include two different bodies encrypted to different

readers, having the same claim label.

– Detectable inter-block equivocation. For any subset of ClaimChain

blocks the owner can produce a proof that, for a given label l ,
all claims in these blocks belong to some set of allowed claims

M without revealing the claims themselves.

The latter property ensures that a user cannot selectively withdraw

access rights between blocks to equivocate users. We detail this

attack and the proof that mitigates it in Section 4.1.

The intra-block non-equivocation relies on three properties of

the ClaimChain construction. First, the uniqueness of the VRF hash

h ensures that for a given label all readers will compute the same

claim lookup key. Second, the unique-resolution property of our

Merkle tree ensures that for a given lookup key all readers obtain

the same claim encoding. Third, the claim commitment ensures

that all readers will decrypt the same claim body.

We formalize both properties in Experiments 4 and 5, and prove

them in Theorems 5 and 6 respectively in Appendix B.2.

4 USING CLAIMCHAINS TO SECURE
IN-BAND KEY DISTRIBUTION

Recall from Section 2 that the goal of the ClaimChain data structure

is to improve the security and privacy of in-band key distribution.

In this section we describe how this can be achieved.

Building a ClaimChain. To use a ClaimChain, a user has to build

blocks, containing her claims. When to update the ClaimChain

depends on the owner’s preferences. For example, a user can update

her chain whenever she rotates her own encryption public key, or

when she needs to distribute new cross-references that are not

present in her ClaimChain yet.

To update her chain, an owner runs the ExtendChain procedure

(Figure 3). For this purpose, she encodes a set of claims represent-

ing all her current views of other users as cross-references in the

following way. For each contact, she makes a cross-claim (l ,m),
where l is the contacts’ e-mail, andm is the contact’s latest block.

Then, the owner must decide which of these claims she intends

to make available to which of her contacts. This choice determines

the access control set acs. The access control policy is governed

by the user’s privacy preferences. Defining these preferences is

beyond the scope of this work.

Recall that to implement access control the owner uses shared

DH secrets with each of the readers. Thus, the owner needs to

complete a round-trip of messages with a contact before she can

give this contact access to her claims.

Finally, the owner puts her own public encryption key into the

public application data section of the block. For our use case of

in-band key distribution we assume that all keys are constant size.

Hence blocks, and therefore claims, are constant size too. This

ensures claim privacy even though the encryption scheme leaks

the length of the plaintext.

Distributing ClaimChains. To fulfill their purpose, ClaimChains

must be made available to other users. For this, a user includes a

content-addressable store containing blocks from her ClaimChain,

and a subset of the Merkle tree nodes from her latest ClaimChain

block, in every message she sends. The user keeps a record of which

blocks they have sent to whom. To select the blocks to be sent, the

sender checks her record, and includes all her ClaimChain blocks

that the recipients of the current e-mail have not received yet.

The subset of the Merkle tree is selected to ensure that all infor-

mation in the ClaimChain relevant to her message can be authenti-

cated. More concretely, the sender produces resolution paths on the

tree (see the GetIncPath procedure in Algorithm 2 in Appendix A

for the details) for each relevant claim and capability.

Receiving messages and validating ClaimChains. Upon re-

ceiving a message with a store containing ClaimChain data, a user

first validates the received chain, running the ValidateBlocks pro-

cedure (Figure 4) to check if the new blocks extend a chain that has

been seen previously. If the validation succeeds, the owner checks

the consistency of the cross-references in the newly received part

of the chain, i.e., whether all the cross-references to Charlie point

to the blocks on a single chain. This partially prevents malicious

chain owners from cross-referencing fake chains. See Section 4.1

for an example of such an attack, and the details of a consistency

check procedure in case the receiver does not have access to the

claim in some of the received blocks. If both checks succeed, she

stores all the received blocks and tree nodes into her gossip storage.

This enables her to query the sender’s ClaimChain later. The gossip

storage contains all the block and tree nodes the user has received

over time.

Message encryption. Following the opportunistic encryption par-

adigm, before sending a message, the sender checks if she has

learned the public keys of all of the recipients through the Claim-

Chains she has received over time. If she cannot find all keys, she

sends the message in plaintext.

To find the encryption keys she proceeds as follows. For every

recipient with e-mail address l , and every ClaimChain with head

ptr in her gossip storage gossip_store, she runs GetClaim(skDH,

l , ptr, gossip_store), see Figure 3, to find out whether it includes

cross-references to this recipient. For every hit, she parses the

corresponding claim and adds the cross-referenced ClaimChain

block of the recipient to a social evidence set for this recipient. She

then identifies the most recent block of the recipient’s ClaimChain

(out of those present in her evidence set), i.e., the one that forms

the longest hash chain, and uses the encryption public key in that

block to encrypt the message. As a result of this process, the sender

may discover new blocks of the recipient’s chain. She can then

include the updated views as cross-references next time the chain

is extended.

Resolving conflicts. This key resolution process may reveal con-

flicting views. For example, the blocks in the evidence set could

point to two or more distinct chains. Another possibility is there

could be a ‘fork’: two valid blocks with the same block index that

extend a common parent block. In either case, ClaimChains con-

flicts are detectable and generate cryptographically non-repudiable
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Figure 5: Inter-block equivocation

evidence. The design of mechanisms for sharing such evidence and

deciding how to act on it is out of scope of this work. In Section 5.2,

however, we empirically measure the number of distinct views that

a sender would on average have about a recipient, to quantify if

resolving conflicts is possible at all in a decentralized setting.

4.1 Detecting inter-block equivocation
ClaimChain’s intra-block non-equivocation property ensures that

all readers of cross-references to Charlie’s chain see the same cross-

reference in each block. However, chain owners may try to present

different views to different users in different blocks by abusing the

access-control mechanism. Thereby, the chain owner can equivo-

cate between blocks.

Consider the following example, illustrated in Figure 5, in which

the chain owner Owen shows Bob a fake cross-reference to Charlie’s

chain, while showing the correct cross-reference to Alice. To do

so, he never lets Alice and Bob see claims about Charlie’s chain in

the same block. In block 1, he gives access to Alice, but not to Bob,

while in blocks 2 and 3, he gives access to Bob, but not to Alice.

Finally, in block 4, Owen again gives access to Alice but not Bob. If

Owen has claims about Charlie’s true chain in blocks 1 and 4—the

ones that Alice can read—and false claims about Charlie’s chain in

blocks 2 and 3—the ones Bob can read—he is effectively launching

an equivocation attack.

A trivial solution to prevent this attack would be to, upon suspi-

cion, allow Alice and Bob to inquire about claims related to Charlie

in the blocks where they do not have access. However, this can

leak information about if and when the chain owner learned about

Charlie’s updates. To be able to withdraw the access while prevent-

ing the described attack in a privacy-preserving way, ClaimChain

enables the chain owner to prove, in zero knowledge, that she did

not equivocate in the blocks where the cross-references were not

accessible by the reader.

Consider again our example in Figure 5. When Alice regains

access to Charlie’s references in block 4, she can use a detection

mechanism to detect Owen’s equivocation attempt. In other words,

she can determine that in the intermediate blocks 2 and 3, where

she did not have access to the cross-references about Charlie, Owen

referenced a different chain than the one she sees. Bob would also

detect the equivocation if he regains read access.

To enable detection, upon giving the access to Alice in block 4

again, Owen constructs a non-equivocation proof as follows.

procedure ProveConsistency(skVRF, l , {Oi }n
1
, {Ci }t

1
, {(ri ,xi )}t

1
)

for i = 1, . . . ,n do
hi ,π

(i)
h ← VRF.Eval(skVRF, l ∥ nonce)

π
(i)
ref
← SPK

{
(ri ,xi ) : comi = Commit(ri ,xi ) ∧
xi ∈ {Hq (C1), . . . ,Hq (Ct )}

}
()

return πconsist =
{
(hi ,π (i)h ,π

(i)
ref
)
}n

1

procedure CheckConsistency(l , {Oi }n
1
, {Ci }t

1
,πconsist, store){

(hi ,π (i)h ,π
(i)
ref
)
}n

1
← πconsist

for i = 1, . . . ,n do
Verify proof π

(i)
h for hi and pk

VRF

Verify proof π
(i)
ref

w.r.t. {Cj }t
1
and Oi using store.

return ⊤ if all proofs verified, otherwise ⊥

Figure 6: Proving and verifying that blocks Oi cross-
reference the label l to the correct chain Ci .

(1) Owen recomputes the VRF hashes hi = VRF.Eval(skVRF, l ∥
noncei ) for all intermediate blocks, and computes proofs of

correctness π
(i)
h :

π
(i)
h = SPK

{
(skVRF) : pk

VRF
= дskVRF∧

hi = VRF.Eval(skVRF, l ∥ noncei )
}
()

Alice can use the VRF hashes to locate the cross-reference to

Charlie in the intermediate blocks of Owen. The proofs π
(i)
h

confirm that she found the correct claims for Charlie’s label l .
(2) Owen proves in zero-knowledge that comi commits to one of

the intermediate blocks C1, . . . ,Ct on Charlie’s chain:

π
(i)
ref
= SPK

{
(ri ,xi ) : comi = Commit(ri ,xi )∧
xi ∈ {Hq (C1), . . . ,Hq (Ct )}

}
().

Owen compiles all the tuples (hi ,π (i)h ,π
(i)
ref
) and sends them to Alice.

Alice uses these tuples to check that each of the intermediate blocks

belong the same chain of Charlie that she saw before. If Owen

indeed equivocated as in the example, Alice can detect this, since

the proof verification would have failed. A detailed description of

this procedure is given in Figure 6.

5 EVALUATION
Experimental setup.We implemented a prototype of ClaimChains

in Python.
7
This implementation uses the petlib library [20] for

elliptic curve cryptography operations, which internally relies on

the OpenSSL C library. For the implementation of hash chains

and unique-resolution Merkle trees we use the hippiehug
8
library,

which is written in pure Python. Our implementation uses AES128

in GCM mode for symmetric encryption; ECDSA, ECDH, and other

elliptic curve operations with a SECG curve over a 256 bit prime

field (“secp256k1”); and SHA256 as the base hash function.

All the lookup keys on the claim map are truncated to 8 bytes,

which makes collisions unlikely for up to 2
32

entries in the map.

7
https://github.com/claimchain/claimchain-core

8
https://github.com/gdanezis/rousseau-chain

8
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Table 1: ClaimChain basic operations timing

mean (ms) std. (ms)

Label capab. lookup key computation 0.30 0.01

Label capab. decoding 0.33 0.01

Label capab. encoding 0.33 0.02

Claim encoding [π computation] 2.44 [2.38] 0.05 [0.05]

Claim decoding [π verification] 3.03 [2.96] 0.05 [0.05]
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Figure 7: Total storage size and claimmap construction time

The size of the per-block nonce is set to 16 bytes, and it is generated

using the standard Linux urandom device.
Our experiments are also publicly available and reproducible.

9

We extensively use Jupyter notebooks [11] and GNU parallel [22].

We run the experiments on an Intel Core i7-7700 CPU @ 3.60GHz

machine using CPython 3.5.2.

5.1 ClaimChain operations performance
We now evaluate the performance of ClaimChains in terms of

computation time and storage.

Timing. We first measure the computation time for encoding and

decoding claims and capabilities as described in Section 3.3. We

encode and decode 1000 claims and corresponding capabilities for

random readers (i.e., encoded for a random DH public key). Each

claim has a 32-byte random label and 512-byte random content. This

reflects a realistic e-mail setting: 32-byte labels can accommodate

e-mail addresses or their hash; and 512 bytes approximates the

approx. 500-bytes block size in our experiments below.

Table 1 reports our measurements. The time for encoding, decod-

ing, and computing lookup keys for capabilities is under 0.33 ms.

The time to encode and decode claims is around 3 ms, consisting

mostly of the proof computation and verification time.

The most computationally expensive operation that ClaimChain

owners perform is constructing the block map when a new block

is created. The map is constructed using the BuildTree procedure

(see Algorithm 1 in Appendix A). We measure the time to create

a block map of n claims with one capability each, i.e., readable

by only one reader. We range n from 100 to 5,000. For each case

we construct a unique-resolution key-value Merkle tree with the

encoded entries. Figure 7 (left) shows the average time required to

build the tree across 20 experiments. Even for 5,000 claim-capability

pairs the operation takes under 0.3 seconds. In reality, we expect

users to have much fewer entries per block (in our simulation using

the Enron dataset this number rarely exceeds 1,000).

9
https://github.com/claimchain/claimchain-simulations

Recall that along with the block, users send paths that prove the

inclusion of relevant claims and capabilities in the block map tree.

These are computed using the GetPath procedure (see Algorithm 2

in Appendix A). We measure the time to compute and verify a proof

for a single entry, as well as the proof size in terms of number of

tree nodes and bytes. We use the same setting as in the previous

experiment. Unsurprisingly, the computation and verification time,

and the proof size scale logarithmically with the number of items

in the map. For 5,000 items, computation and verification take on

average about 150 milliseconds, and the proof consists of on average

20 tree nodes and takes about 1.5 KB.

Storage. We measure the size of a ClaimChain block, a block map

tree, and values stored in the leaves of the tree (encrypted claims

and capabilities). The size of the block map depends on the number

of entries in the map and the size of claims. Figure 7 (right) shows

the size breakdown depending on the number of items in the map.

Note that the block itself only includes the root of the tree. Thus,

the block size is constant (about 500 bytes), and can only grow if

security parameters change (size of cryptographic public keys, or

hash length increases), or additional data about the owner is added.

Inter-block equivocation detection. The cost of proving con-

sistency is dominated by the proof π
(i)
ref
. Using a straightforward

instantiation with ‘or’ proofs, the prover and verifier must com-

pute approximately 5t exponentiations to construct and verify π
(i)
ref

,

where t is the number of possible cross-referenced blocks. Therefore,

a full consistency proof requires approximately 5nt exponentiations,
where n is the number of intermediate blocks on the owner’s chain.

5.2 ClaimChain for in-band key distribution
In this section we study the use of ClaimChains for supporting

in-band key distribution. We make use of the Enron dataset [10, 14]

as a realistic test load to drive our experiments. It contains 500,000

e-mails of 147 Enron employees (230,000 after removing duplicates

and non-readable e-mails).

To simulate the use of ClaimChains, we loop through the e-mails

in this dataset chronologically, updating ClaimChains of senders

and receivers after each sent e-mail. For the experiments we run

simulations of 10,000 consecutive e-mails from the full log of e-

mails. We consider that at the beginning of a simulation the senders’

ClaimChains are empty. During simulation they embed ClaimChain

data in their messages as described in Section 4, and that upon

receiving a message, users store all ClaimChain data locally.

We consider a scenario, called private setting, in which senders se-

lectively share the cross-references using ClaimChains. The rights

to access claims are granted incrementally via ‘introductions’. Every

time there is an e-mail with more than one recipient, all recipients

earn a capability to access the cross-references about the correspon-

dents in the sender’s ClaimChain. Such capabilities are persistent

over time. A user updates her chain when any of the recipients

should receive a capability to a claim, and either the capability or

the claim are not already in the ClaimChain.

As a baseline, we compare it to the public setting, another scenario

in which users gossip all the information available to them to their

correspondents. They do not use ClaimChains since there is no

need for access control. This scenario is close to the operation of

the PGP Web of Trust if the users always were attaching their
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public key along with signatures on the keys of all their friends

(cross-references). Since users share all the information they have

available with everyone, the effectiveness of this setting reflects

the fundamental limit for decentralized in-band key distribution.

To show how key propagation properties vary with the underly-

ing social graph, we consider two groups of users from the dataset.

First, only the 147 Enron employees, which represents a dense, well-

connected, small social network with frequent messaging. Second,

all users in the dataset, which is a sparsely connected network with

many sporadic messages.

Resilience to conflicts in views.Wefirst study howClaimChains

protect against attackers that aim at misleading users by report-

ing fake information about others. For each e-mail we record the

amount of views that the sender has collected over time about each

recipient. We call this quantity social evidence diversity. When the

evidence diversity is 1 for a given recipient, the sender only has

one view—that of her own. When it is 10, that means the sender

knows of 9 other people that have cross-referenced the recipient’s

chain. Intuitively, the higher is the diversity, the more users have

to be corrupted by an adversary in order to convince the sender of

a non-truthful ClaimChain state of the recipient.

Fig. 8 illustrates the results in one batch of 10,000 messages.

Results in other batches are similar. Unsurprisingly, in the public

setting the amount of evidence is much higher than in the private

setting, since much more information is exchanged. We also see

that including all users reduces the mean diversity, since the social

graph is sparse and many users do not have the opportunity to

gather enough information about their correspondents.

Social evidence can also differ because over time views get out-

dated. In this case, the availability of the latest ClaimChain state of

a user in our decentralized in-band setting is fundamentally limited

by users’ communication behavior. This is not a critical issue, since

the construction of ClaimChains enables to differentiate ‘forks’ re-

sulting from an attack from simple chain updates. For example,

in our private setting, social evidence includes views of the same

chain at different time instants (on average in 1% of cases among

all users, and in 5% within the Enron employees). In all these cases,

ClaimChain enables to establish which view is the most up-to-date

in a given social evidence set.

Storage and bandwidth costs. To evaluate the overhead imposed

by the use of ClaimChains for each user we record the size of the

ClaimChain data being sent with each e-mail, and the required

storage. We separately measure self-storage—the space taken by

users’ own ClaimChain blocks and tree nodes, and gossip storage—

the space taken by information received from other users.

The Figure 9 shows that these costs rise over time as chains grow.

We observe a large variation in growth caused by the variation in

users’ behaviour within the dataset. In the extreme, after 10,000

sent e-mails the required bandwidth per message is under 30 kB,

the total size of the self-storage is under 50 kB, and the size of the

gossip storage is under 2 MB. Note that we only report here the

results in the private setting, since it employs ClaimChains.

Effectiveness of in-band key distribution. Recall that the end
goal of the public-key distribution is to enable end-to-end encrypted

communication. Thus, we measure the effectiveness of the distri-

bution as the percentage of encrypted e-mails, i.e., the fraction of

times when a sender has received at least one ClaimChain block of

all the recipients, directly or through gossiping, and could find the

key to encrypt the message to them. We simulate 10,000 e-mails

starting at arbitrary points in the e-mail log and record whether

senders have enough information to encrypt the e-mail. Figure 10

shows how this proportion changes over time.

On the left we show the results within the set of Enron employees.

At the beginning of the trace users learn many keys and increas-

ingly more e-mails get encrypted. After some time the discovery

rate decreases and there is a large variation in the proportion of

encrypted e-mails. For this particular run, in the public setting, the

overall proportion is 66%, decreasing to 57% in the private setting.

We study the variance running the private setting simulations ten

times at different points in the log. We observe that by the 2,000-th,

4,000-th, 6,000-th, and 8,000-th e-mail, on average 38% (±15), 50%

(±11), 55% (±12), 57% (±12) of e-mails are encrypted
10
. The overall

percentage of encrypted e-mails across the ten runs is 59% (±9).

Note that these rates do not consider possible key gossiping that

could have happened through users outside of the company.

On the right we consider all users. Compared to the previous

measurements, the proportion of encrypted messages is signifi-

cantly lower, overall average being 26% in the public setting. This

is because many senders and recipients are outside of the group

of Enron employees and thus exchange fewer, or sporadic, e-mails.

In the private setting the proportion decreases by only 4 p.p to

22%. Across all ten runs, the overall proportion is 23% (±7). Note

that these numbers are a lower bound on the number of encrypted

e-mails. Since we do not observe the inbox of non-Enron users, we

cannot establish the effectiveness of gossiping. Thus, the propaga-

tion may be better than shown in our measurements.

Takeaways. As expected, promiscuous public gossiping is more ef-

fective at propagating the key information than privacy-preserving

sharing. Nonetheless, its advantage is relatively small. Sacrificing

users’ privacy does not provide a significant increase in the pro-

portion of encrypted e-mails. This suggests that selective revealing

of cross-references, enabled by ClaimChain cryptographic mecha-

nisms, can offer a better trade-off between privacy and utility than

the traditional Web of Trust-like sharing model.

On the other hand, the gain in privacy comes at a cost in resis-

tance to active attacks. Even though gossiping in the private setting

does not significantly decrease the proportion of encrypted e-mails,

it does significantly deteriorate the resilience to malicious users.

The evidence diversity in the private setting can be up to 10 times

lower than in the public setting. This means that on average fewer

users need to be compromised to propagate inauthentic keys.

The public setting in our simulations represents an upper bound

for key propagation as in this setting users share all the information

available to them. Our results corroborate that, independently of the

use of ClaimChains to secure cryptographic material, in-band key

distribution is unlikely to achieve full coverage, and furthermore

the coverage is largely unpredictable. In a decentralized setting, key

propagation cannot be more effective unless additional communi-

cation channels are employed.

10
By ±x we denote 95% Student t-distribution confidence interval in percentage points

10
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Figure 8: Evidence diversity (within Enron, left, and all users, right).
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Figure 10: Encryption status of e-mails (within Enron, left, and all users, right). Proportions are computed over groups of 1,000
consecutive e-mails.

6 COMPARISONWITH EXISTING SYSTEMS
In this section we compare ClaimChain to other key distribution

systems targeting e-mail communications. Designs that facilitate

secure key distribution in other contexts, like Certificate Trans-

parency [12] for HTTPS connections, are out of scope.

We consider four approaches that represent existing deployed

and academic solutions. First, we consider the PGP in-band decen-

tralized approach, where users attach their public keys in outgoing

e-mails. This corresponds to the current implementation of Au-

tocrypt where there is no gossiping of contacts’ keys. Second, we

compare ClaimChain to systems that employ highly available cen-

tralized key servers taking the SKS Keyservers, a pool of synchro-

nized servers that store PGP keys, as reference. Third, we consider

solutions that, like ClaimChain, use high-integrity data structures

(hash chains and Merkle trees) so as to hold providers accountable

for the bindings they serve. In this space we consider CONIKS [15],

a federated variant, and Keybase
11
, a centralized design. Finally,

we consider approaches such as Namecoin
12

that bind identities to

cryptographic wallet addresses on Proof-of-Work blockchains [17].

We compare these systems in terms of functionality, computa-

tional and network costs. The result is summarized in Table 2 where

we use the following notation: n—number of users, s—number of

sent messages, r—number of received messages, b—maximum total

number of contacts of any user after s sent and r received messages.

PGP key distribution. OpenPGP [2] is a format for sharing PGP

key material. It enables users to vouch for each others’ keys, con-

structing a Web of Trust. In-band PGP key distribution, whereby

users’ keys are embedded in messages, is vulnerable to attacks

by malicious e-mail providers and network adversaries who, first,

gain complete visibility of the users’ Web of Trust, and second, can

11
https://keybase.io

12
https://namecoin.org

11

https://keybase.io
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Table 2: Comparison of key distribution systems from an end-user perspective. Social graph visibility: who learns the user’s
social graph. Active attack detection: whether active attacks by malicious providers, users, and network adversaries can be
detected. Total key availability: guarantee that recipients’ current encryption keys are always available to senders.

In-band PGP SKS Keyserv. CONIKS Keybase Namecoin ClaimChain
Social graph visibility E-mail provider Public Provider Public Public Authorized readers

Active attack detection ✗ ✗ ✓‡ ✓‡ ✓‡ ✓

Total key availability ✗ ✓ ✓ ✓ ✓ ✗

Sending bandwidth, O(·) s · b s · b2 s · b · log(n)† s · b · (b + log(n))† s · b · (b + log(n))† s · b2 · log(b)
Receiving bandwidth, O(·) r · b r · b r · log(n)† r · (b + log(n))† r · (b + log(n))† r · b2 · log(b)
Local storage, O(·) b2 b2 b + log(n) b2 b2 r · b2 · log(b)

†
Without costs for auditing the transparency log / verifying blockchain history ‡ Requires global consensus on system’s state

replace the attached keys and in that way compromise the confiden-

tiality of users’ communications. The Autocrypt implementation

protects from servers launching man-in-the-middle attacks, but

still reveals the contacts. Moreover, malicious users can equivocate

by sharing different versions of others’ keys with different readers.

ClaimChain can be seen as an alternative format to OpenPGPwhere

cryptographic mechanisms hide contacts’ information. Further-

more, it ensures that all readers retrieve the same cross-reference

for a contact, and makes past equivocation attempts detectable.

For in-band PGP key distribution users need to attach their keys

and cross-references in their e-mails, hence requiring O(s · b) and
O(r · b) outgoing and incoming bandwidth respectively. Locally,

they need to store the keys of all their friends (O(b)), and their

friends’ cross-references (O(b) for each friend), resulting in O(b2)
cost. As shown in Section 5, key propagation efficiency in this

setting strongly depends on the social graph and on the users’

behavior, and is not constant.

Centralized PGP PKI providers allow to achieve 100% key avail-

ability, but introduce security and privacy concerns. The most

widely deployed implementation, the SKS Keyservers, does not

defend against malicious providers that serve fake keys, or that ex-

ploit key lookup requests to learn users’ relationships. In addition,

they accept unauthenticated plaintext HTTP requests, and thus

network adversaries can also perform these attacks.

Centralized PKIs obviate the need for attaching key material in

outgoing e-mails. However, before sending a message, a user needs

to obtain the latest key of each of the recipients (which contains

their cross-references, O(b)), requiring O(s · b2) bandwidth. Upon
receiving a message, users look up the sender’s key (containing

O(b) cross-references), thus also resulting in O(r · b) network cost.

As in the previous setting, users store the keys of their friends,

including their cross-references, requiring a storage of O(b2).
Accountable key repositories. Recent approaches to key distri-

bution rely on transparency logs [15] to prevent active attacks from

malicious providers and network adversaries.

In CONIKS [15], providers maintain cryptographically signed

hash chains that can be audited for serving the correct key bindings

for their users. Key lookup responses in CONIKS include a Merkle

tree proof of inclusion (size log(n)). Hence, considering that users
make a lookup request for each of the recipients when sending, and

for the sender when receiving, the bandwidth cost isO(s ·b · log(n))
for sending and O(r · log(n)) for receiving. Users store the keys

of the friends, and the current inclusion proof for their own key,

which requires storage space bound by O(b + log(n)). We do not

consider bandwidth costs related to verifying the history of the

CONIKS provider or the consistency of users’ keys.

Keybase maintains a global auditable hash chain that contains

commits to users’ individual sigchains through a global Merkle tree.

These sigchains are self-signed objects that evolve over time and

include information about owner’s keys, devices, online profiles,

and friends. The global chain is occasionally cross-referenced into

the Bitcoin’s blockchain guaranteeing that it cannot be tampered

with. Keybase users can create cross-references to their contacts by

adding a snapshot of their contacts’ state into their own sigchain.

These cross-references are public, thus reveal user relationships.

The latest state of a Keybase user includes a Merkle proof in

the Keybase tree and the cross-references of her friends, which

is bound by O(b + log(n)). Hence, the bandwidth cost for sending

messages, assuming that senders retrieve the receivers’ latest keys

from Keybase, is O(s · b · (b + log(n)). In the same way, the cost of

receiving e-mails, including looking up the latest version of the

sender key, is O(r · (b + log(n)). These estimations do not consider

the cost for validating the Keybase history, the consistency of user

history, or the Keybase cross-references on the Bitcoin blockchain.

Users store locally the keys of their friends and their respective

cross-references, thus requiring O(b2) storage.
Unlike ClaimChains, neither CONIKS nor Keybase provide mech-

anisms to enable social verificationwhile protecting the social graph

of users. Furthermore, CONIKS, a federated design, and Keybase,

a centralized design, both put providers in a privileged position

to observe their users’ communications patterns. ClaimChains are

designed to work in a decentralized setting that does not rely on

the existence of a single entity with a global view of the system.

PKIs inspired by the Bitcoin blockchain. Some PKI systems

leverage permissionless decentralized cryptographic ledgers. Be-

sides high availability and resistance to tampering attempts, ledgers

also provide a global namespace and mechanisms for achieving

global consensus. For instance, Namecoin uses a proof-of-work

blockchain [17] to implement key discovery for secure messaging

apps. In Namecoin key material is encoded in the OpenPGP format,

thus revealing the users’ social graph. Moreover, the public trans-

actions reveal information such as how social graphs evolve, or

how pseudo-identities are linked to the same owner. ClaimChains

protect this information by means of cryptographic access controls.

Furthermore, blockchain-based systems involve a fee for obtaining

and managing key material. Instead of maintaining a global state,

in ClaimChains each user controls a personal chain. Thus, there

12



is no need for mining blocks and thus there are no costs for key

management operations.

From the perspective of end-users, the bandwidth and storage

costs in Namecoin are the same as in Keybase. In a similar way, we

do not consider costs involved in maintaining consensus in a global

proof-of-work blockchain, or in verifying its history.

In-band key distribution with ClaimChains. Finally, we out-
line the costs involved with using ClaimChains. Besides her own

information, owners include a claim for each of her cross-references

and capabilities, along with the corresponding proofs of inclusion

in the block map. Therefore, the size of a ClaimChain block is bound

by O(b2 · log(b)). Consequently, given that all messages attach a

ClaimChain block, the total sending and receiving bandwidth cost

is O(s · b2 · log(n)) and O(r · b2 · log(n)), respectively. Users are
expected to store all ClaimChain blocks they receive, requiring a

total storage of O(r · b2 · log(n)).

7 CONCLUDING REMARKS
In-band key distribution, as proposed by Autocrypt, is a promising

direction towards achieving e-mail encryption without the collabo-

ration from service providers. However, it suffers from security and

privacy problems. To address these issues we introduced Claim-

Chains, a construction that can be sent in-band with e-mails to

provide high-integrity evidence of key-identity bindings. Its cryp-

tographic access control enables users to selectively reveal their

contacts, preserving their privacy, while preventing equivocation

attacks in which different users are shown different bindings.

We demonstrate that key propagation, and thus the ability to

encrypt messages, is not affected much when using the privacy

features of ClaimChains. However, users do obtain less evidence

about other users’ bindings, increasing the chances that wrong

keys go unnoticed. On the negative side, our study shows that the

coverage achieved by in-band key distribution is partial at best. In

our realistic simulations we could achieve a maximum of 66% of

e-mail encrypted, even within a well-connected social network.

However, we note that the design of ClaimChains is not tied to

decentralized storage and distribution. Their strong security and

privacy properties permit to host the content-addressable storage

in semi-trusted providers without relying on them to return correct

values. Such deployment of ClaimChains would greatly improve

availability of ClaimChain data. But, to obtain perfect privacy, such

scheme requires integration with privacy-preserving storage ac-

cess [3, 23] to avoid leakage stemming from access patterns.

Finally, ClaimChain or its component data structures can have

applications to use cases beyond key distribution. The claim map

data structure, for example, can be applied in similar settings when

a verifiable dictionary with cryptographic access controls for its

lookup keys is needed.
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A UNIQUE-RESOLUTION KEY-VALUE
MERKLE TREE

Our unique-resolution key-value Merkle tree data structure is com-

posed of two types of nodes:

Internal = (pivot, left : H (Node), right : H (Node))
Leaf = (key, value)

We denote the root of a tree asMTR. Each Internal node contains a

pivot string and the hashes of its two children. The invariant of the

structure is that any nodes in the left sub-tree will have pivots or

leaf keys smaller than the parent pivot, and any nodes to the right

sub-tree have pivots or leaf keys equal or larger than the parent

pivot. As in a normal Merkle tree, the hash of the root node is a

succinct authenticator committing to the full sub-tree (subject to

the security of the hash function).

A proof of inclusion, or authentication proof, of a key-value pair

in the tree involves disclosing the full resolution path of nodes from

the root of the tree to the sought leaf. We show that such path is

indeed a proof of inclusion, and, moreover, is unique in Section A.2.

A.1 Algorithms
Building the tree. To build a tree from a set of key-value pairs S =

{..., (ki ,vi ), ...}we run the BuildTree procedure (Algorithm 1) The

procedure take as input a set of claims S and a content-addressable

store. It constructs the tree nodes and saves them to the store.

Finally, it returns the hash of the root node of the resulting tree.

Querying the tree. The tree querying procedureQueryTree is

described in Algorithm 2. It takes as input the tree rootMTR and

store that contains the tree nodes. The procedure traverses the tree

starting from the root. For each intermediate node, the procedures

follows a left or right sub-tree depending on the pivot field. It

continues until it ends up in a leaf node. If the leaf node has the

correct key,QueryTree returns the corresponding value, otherwise

it returns ⊥.

A.2 Unique resolution
For a given key, only one value can be stored in the tree. Any

violation of this invariant will be detected when the tree is queried—

thus the creator of the tree does not need to be trusted to enforce

this invariant. More formally, for a given key k it is only possible

to successfully prove the inclusion of one leaf node in the tree

with root MTR. We capture this notion in the UniqRes game in

Experiment 1. The following theorem states that no adversary can

win this game.

Theorem 1. For any probabilistic polynomial time adversary A
it holds that PrA [b = 1] = negl(λ), where the bit b ∈ {0, 1} is the
output of the UniqRes game (Experiment 1).

Algorithm 1 Tree construction

procedure BuildTree(S , store)
if |S | = 1 then
{(k,v)} ← S
leaf← Leaf(k,H (v))
Put(store, leaf)

Put(store, v) ▷ Put the value itself into the store

return H (leaf)
else
(k∗,v∗) ←

$
S ▷ Pick the pivot arbitrarily

(S−, S+) ← Partition(k∗, S)
left← BuildTree(S−, store)
right← BuildTree(S+, store)
node← Internal(k∗, left, right)
store.Put(node)

return H (node)

procedure Partition(k∗, S)
S−, S+← { }, { }
for (k,v) in S do

if k < k∗ then ▷ Lexicographic comparison of strings

S−← S− ∪ {(k,v)}
else

S+← S+ ∪ {(k,v)}
return (S−, S+)

Algorithm 2 Querying the tree

procedureQueryTree(MTR, k , store)
π ← GetPath(MTR, k , store)
[..., Leaf(k ′,v)] ← π
if k ′ = k then

return ⊥
else

return v

procedure GetPath(h, k , store)
node← store.Get(h)
if node is Leaf then

return [node]
else if node is Internal(pivot, left, right) then

if k < pivot then
π ← GetPath(left, k , store)

else
π ← GetPath(right, k , store)

return [node] + π ▷ Prepend the current node to the list π

Proof. Assume A wins the game. Then it is able to construct

two stores such that there are two different valid paths:

π ← GetPath(MTR,k, store)
π ′ ← GetPath(MTR,k, store′),

that start with the same root MTR, but end with different leaves

containing (k,v) and (k,v ′) respectively.
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Experiment 1 Unique Resolution

UniqRes
A (λ)

MTR,k, store, store′←A()
if store = store

′ then
return 0

v ←QueryTree(MTR,k, store)
v ′←QueryTree(MTR,k, store′)
b ← v , v ′

return b.

First, assume one of the paths, w.l.o.g. π , consists of a single

leaf node t with (k,v). Then the other path π ′ can contain either

another leaf t ′ with (k ′,v), or start with an internal node t ′. This
implies a hash collision, since t , t ′, butMTR = H (t) = H (t ′). By
the collision resistance property of the cryptographic hash function

H , this happens with negligible probability.

Now, assume that the paths have a common beginning. Let

t , t ′ be the first nodes along the paths that differ, and let t∗ =
Internal(p∗,h∗l ,h

∗
r ) be their common parent. Then, there are four

possible options:

(a) Both t and t ′ are a left child of t∗. In this case,H (t) = H (t ′) =
h∗l . This implies a hash collision, which we assume to happen

with negligible probability.

(b) Both t and t ′ are a right child of t∗. This is analogous to the

previous case.

(c) The children t and t ′ are respectively the left child and the

right child of t∗. This situation cannot happen, because Get-

Path decides which child to follow based on the value of the

pivot p∗ and the lookup key k . Since the parent is common,

the procedure will always choose either the left, or the right

child.

(d) The children t and t ′ are respectively the right child and the

left child of t∗. This is analogous to the previous case.

Thus, the probability that A wins the game, PrA [b = 1], equals
the probability of a hash collision and is therefore negligible. □

B SECURITY OF THE CLAIMCHAIN DATA
STRUCTURE

B.1 Privacy
Here we formally describe the privacy properties of ClaimChains.

Claim privacy. The adversary cannot learn anything about the

content claims for which it does not have the corresponding capa-

bilities.

We formalize this in Experiment 2 using an indistinguishability

game. The game models that the adversary cannot distinguish

between a claim containing one of two equal-length messages of

its choice. The experiment is executed by a challenger that plays a

game with the adversary A.

The game starts with creating a user that represents an hon-

est reader, and another user that represents the challenger. We

then provide the adversary with an oracle access that allows it to

create users and request them to extend their chains with adversary-

supplied claims and access control sets (see Algorithm 3). Moreover,

the adversary is allowed to modify store.

Algorithm 3 Add user and extend chain oracles

▷ Add a new user

procedure AU(id)
(skid

sig
, pkid

sig
) ← Sig.KeyGen(1λ)

(skid
DH
, pkid

DH
) ← DH.KeyGen(1λ)

(skid
VRF
, pkid

VRF
) ← VRF.KeyGen(1λ)

keys
id← (skid∗ , pkid∗ )

(sk′id
sig
, ...) ← keys

id ▷ Separately record the signing key

▷ Extend the chain of an existing user

procedure EC(id, data, claims, acs, store)

if user id does not exist then return ⊥
ptr

id← ExtendChain(

data, claims, acs, keysid ∪ sk′id
sig
, ptrid, store)

return ptr
id

Eventually, the adversary outputs two claims (l0,m0) and (l1,m1).
The challenger flips a random coin b, and constructs a challenge

block containing claim (lb ,mb ), readable by the honest reader, but

not by the adversary. The adversary then has to guess which of the

two challenge claims were included in the challenge block. It may

make further oracle queries.

Note that this definition implies that the adversary cannot learn

anything about the claim neither from the claim encoding itself,

not from any of the capabilities. Additionally, the adversary could

have access to the claim in the past, but not in the challenge block.

The proof of knowledge π in the claim encoding c depends on
the claim key k and other public values, making it difficult to prove

directly that the adversary cannot learn anything about the bit

b. Therefore, in one of the steps we replace this proof π with a

completely random proof. The following lemma states that we may

do so.

Lemma 2. To any distinguisher that does not know the value

kπ ∈ {0, 1}2λ , the proof π in EncClaim is indistinguishable from a

randomly drawn proof in the random oracle model for Hq .

Proof. Without loss of generality, we focus on a simpler proof

with only a single conjunct, writingm for l ∥ nonce:

π ← SPK{(skVRF) : pk
VRF
= дskVRF∧h = VRF.Eval(skVRF,m)}(kπ ).

Which abbreviates the following proof:

π ← SPK{(skVRF) : pk
VRF
= дskVRF ∧ h = HG(m)skVRF }(kπ ).

To construct this proof, pick a randomizer r
sk
← Zq , and compute

R
pk
= дrsk

Rh = HG(m)rsk

c = Hq (д ∥ HG(m) ∥ pkVRF ∥ h ∥ Rpk ∥ Rh ∥ kπ )
s
sk
= r

sk
+ c · skVRF.

The proof is then given by (c, s
sk
). To verify the proof, compute

R′
pk
= дsskpk−c

VRF

R′h = HG(m)sskh−c ,
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Experiment 2 Claim privacy

ClaimPriv
A (λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup

AU(‘reader’) ▷ Initialize reader’s chain

AU(‘challenger’) ▷ Initialize challenger’s chain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Content to include in the challenge block

(l0,m0), (l1,m1), data, claims), acs, store) ←
← AEC(·),AU(·)

(
pk

‘reader’

DH

)
if l0 or l1 in acs or |m0 | , |m1 | then return 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Challenge block

b ←$ {0, 1}
claims

′← claims ∪ {(lb ,mb )}
acs
′← acs ∪ {(pk‘reader’

DH
, lb )} ▷ Give the reader the access to lb

ptrC ← EC(‘challenger’, data, claims
′
, acs

′
, store)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Response

ˆb ←AEC(·),AU(·) (
ptrC

)
return ˆb = b

and verify that c equals Hq (д ∥ HG(m) ∥ pkVRF ∥ h ∥ R′pk ∥ R
′
h ∥

kπ ).
Suppose that the adversary does not know kπ . To randomly

generate the proof, draw (c ′, s ′
sk
) ← $ Z2

q at random. Since the

adversary does not know kπ it can never query the random oracle

Hq with the correct value for kπ , therefore it cannot distinguish
the fake proof (c ′, s ′

sk
) from a real proof (c, s

sk
). □

Theorem 3 (Claim privacy). For any probabilistic polynomial time

adversaryA it holds that Pr [b = 1] ≤ 1

2
+negl(λ),where b ∈ {0, 1}

is the result of ClaimPriv game (Experiment 2) run with A.

Proof. We construct a sequence of games and show thatA can

distinguish between them with negligible probability, starting with

G0 = ClaimPriv
A (λ).

First, we show that the adversary cannot extract any information

about b from the capability entry for lb because of security of the

Diffie-Hellman key exchange and the encryption scheme.

Recall from the EncCap (Figure 2) and ExtendChain procedures

(Figure 3) that the corresponding capability lookup key icap and

the encryption key kcap are given by:

icap = H3(s ∥ lb ∥ nonce)
kcap = H4(s ∥ lb ∥ nonce),

where s is the shared DH secret.

G1 In this game we substitute the shared Diffie-Hellman secret

s with the random string α ←$ {0, 1}λ in all capabilities for

reader pk
‘reader’

DH
in all blocks on the challenger’s chain. In

particular, we set:

icap = H3(α ∥ lb ∥ nonce)
kcap = H4(α ∥ lb ∥ nonce),

G2 In this game, we substitute the capability key kcap with a

random string β ←$ {0, 1}2λ . The capability becomes:

cap = Enc(β,h ∥ k ∥ kπ ).

G3 In this game, we substitute the lookup index icap with a

random string γ ←$ {0, 1}2λ as well.

G4 In this game, we substitute the plaintext h ∥ k ∥ kπ with a

random string γ of the same length:

cap = Enc(β ,γ ).

The games G0 and G1 are indistinguishable by the decisional

Diffie-Hellman assumption. GamesG1 andG2 are indistinguishable

by the pseudorandomness of the hash function H4. The indistin-

guishability of G2 and G3 follows from the pseudorandomness of

H3. Since the encryption key β is random, distinguishing between

G3 andG4 can be trivially reduced the IND-CPA security for the en-

cryption scheme. Therefore, gamesG3 andG4 are indistinguishable

as well.

The adversary is not allowed to give access to labels l0, l1 to any

user (honest or not). As a result, no other capability entries depend

on the challenge bit b.
SinceG4 replaces the real plaintext with a random plaintext, the

adversary also does not learn anything about k and kπ .
Now we show that the adversary cannot extract information

about b neither from the claim encoding, nor from the claim lookup

key. We use the IND-CPA security of the encryption scheme and

pseudorandomness of the VRF scheme.

Recall from the EncClaim (Figure 2) and ExtendChain proce-

dures (Figure 3) that here the encoded claim c is given by:

c = Enc(k,π ∥ mb ) ∥ com.

G5 In this game, we replace the non-interactive zero-knowledge

proof π with a uniformly random proof π ′ that does not
depend on any of the secret values, nor on any of the public

values.

G6 In this game, we replace the commitment com by a random

commitment comR ← G.
Games G4 and G5 are indistinguishable because of Lemma 2. Since

πcom no longer depends on the randomness r , the commitment

com is perfectly hiding. Therefore, games G5 and G6 are indistin-

guishable as well.

Next, we change the claim encryption key k to a random key.

Note that because of the changes made in G4, the adversary does

not learn anything about k from the capability cap.

G7 In this game, we generate a random encryption key δ and

use it to replace k :

c = Enc(δ ,π ′ ∥ mb ) ∥ com.

G8 In this game, we replace the plaintext π ′ ∥ mb with a random

message µ of the same length:

c = Enc(δ , µ) ∥ comR .

GamesG6 andG7 are indistinguishable since the adversary learns

nothing about k because of earlier transformations. Games G7 and

G8 are indistinguishable because of the CPA security of the encryp-

tion scheme.
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Experiment 3 Capability-reader unlinkability

CapReaderUnlink
A (λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup

AU(‘challenger’) ▷ Initialize challenger’s chain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Content to include in the challenge block

pk
0

DH
, pk

1

DH
, l ,m, data, claims, acs, store←AEC(·),AU(·)()

if pk0

DH
or pk

1

DH
not a honest user then return 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Challenge block

b ←$ {0, 1}
claims

′← claims ∪ {(l ,m)}
acs
′← acs ∪ {(pkb

DH
, l)}

ptrC ← EC(‘challenger’, claims
′
, acs

′
, store)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Response

ˆb ←AEC(·),AU(·) (
ptrC

)
return ˆb = b

The final dependency on the bit b is in the claim lookup key

i = H1(hb ), see EncClaim (Figure 2). We remove this final reference.

G9 In this game, we substitute hb in i with a random value

q′ ←$G:

i = H1(q′)

The changes in games G4 and G5 ensure that the adversary does

not learn anything about hb directly. Also, indirectly the adversary

cannot learn about hb . The adversary can learn other VRF values

by adding claims and giving itself access to them. However, the

pseudorandomness property of the VRF ensures that even if the

adversary makes many VRF queries, the remaining values remain

pseudorandom. Hence, the adversary cannot distinguish G8 from

G9.

In game G9 none of the values depend on the challenge bit b,
hence, the adversary cannot have advantage better than random

guessing. □

Capability-reader unlinkability. The adversary should not be

able to determine who has been given access to a claim, i.e., for

which honest user a capability has been created. We model this

using the indistinguishability game in Experiment 3. The adversary

can create users (using the AU oracle) and extend their chains

(using the EC oracle). It then outputs the public keys pk
0

DH
and

pk
1

DH
of two honest users it created using the AU and a description

of a claim with label l on which it wants to be challenged. The

challenger picks one of the honest users at random, and adds a

capability to l for that user. The adversary must decide which user

has been given the capability.

Theorem 4. For any polynomially-boundedA it holds that Pr [b =
1] ≤ 1

2
+negl(λ),where b ∈ {0, 1} is the result of CapReaderUnlink

game (Experiment 3).

Experiment 4 Intra-block non-equivocation

BlockNonEq
A (λ)

skDH, pkDH← DH.KeyGen(1λ)
sk
′
DH
, pk′

DH
← DH.KeyGen(1λ)

l , ptr, store, store′←A(pk
DH
, pk′

DH
)

m← GetClaim(skDH, l , ptr, store)

m′← GetClaim(sk
′
DH
, l , ptr, store′)

returnm ,m′ ∧m , ⊥ ∧m′ , ⊥

Proof. We show that the adversary cannot extract any infor-

mation about b from the capability entry for l . The adversary may

have given other readers access to label l , but the corresponding
capabilities are independent of the bit b, so we ignore them. We

focus instead on the capability for reader pk
b
DH

. Recall from the

EncCap (Figure 2) and ExtendChain procedures (Figure 3) that

the corresponding capability lookup key icap and the encryption

key kcap are given by:

icap = H3(s ∥ lb ∥ nonce)
kcap = H4(s ∥ lb ∥ nonce),

where s is the DH secret between the chain owner and the reader

pk
b
DH

. We apply the sequence of gamesG0, . . . ,G4 in the proof of

Theorem 3. The indistinguishability of the games proves that the

adversary does not learn anything about the bit b. Therefore, we
have capability-reader unlinkability. □

B.2 Non-equivocation
Intra-block non-equivocation. Within a given block, a Claim-

Chain owner cannot include two different claims having the same

label to different readers.

Wemodel this in Experiment 4. The adversary’s task is to produce

a block pointed to by ptr and a label l such that the two readers

pk
DH

and pk
′
DH

derive different claimsm andm′.

Theorem 5 (Intra-block non-equivocation). For any polynomially-

bounded A it holds that Pr [b = 1] ≤ negl(λ), where b ∈ {0, 1} is
the result of BlockNonEq game (Experiment 4).

Proof. We first prove that both store and store
′
must contain

the same block B. Suppose not, i.e., store contains block B whereas

store
′
contains a different block B′ that both hash to the same head

ptr. Then the adversary breaks the collision resistance of H . Since

H is a cryptographic hash function, this happens with negligible

probability.

The remainder of this proof is also by contradiction. Assume

adversary A wins Experiment 4. We use the uniqueness of the

VRF, first for the claim key k , then for the lookup key h, to derive

a contradiction, i.e., that m = m′. Both readers pk
DH

and pk
′
DH

first compute the capability lookup key (step 3), see GetClaim

procedure (Figure 3), retrieve the capability (step 4) and decode

it (step 5). Capabilities are per reader, and therefore different. We

continue the proof from step 5.

Let i and i ′ be the claim lookup keys derived in step 5 of the

GetClaim() call by respectively the first and second user. We first
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consider the case where i = i ′. By the unique resolution prop-

erty of the tree (see Experiment 1), we know that in step 6 both

GetClaim() calls must then derive the same claim encoding c with
overwhelming probability.

Since the adversary wins, the derived messagesm andm′ are
different and not ⊥, therefore the calls to DecClaim() in step 7

returned different messagesm ,m′:

m ← DecClaim(pkO
VRF
, l ,h,k,kπ , c, nonce)

m′ ← DecClaim(pkO
VRF
, l ,h′,k ′,k ′π , c, nonce).

Since the encoding c is the same for bothm andm′, this situation
is not possible by the binding property of the commitment scheme.

Indeed, the users verify proofs π , respectively π ′, in step 6, which

verify the commitment com.

We now consider the case where the readers derive different

lookup keys i and i ′ in step 5. Since i , i ′ and by the collision

resistance of H1, we have that the corresponding VRF values h and

h′must be different as well. However, by uniqueness of the VRF, this

cannot happen. More precisely, both users successfully verify the

proofs π , respectively π ′, in step 6, which prove that h = VRF.Eval(
skVRF, l ∥ nonce) = k ′, respectively h′ = VRF.Eval(skVRF, l ∥
nonce), and therefore h = h′, contradicting the assumption that

i , i ′. □

Detectable inter-block equivocation. The game in Experiment 5

models that a claim owner cannot make a non-consistent reference,

yet produce a proof of consistency that validates using CheckCon-

sistency() (see Figure 6). More precisely, the adversary outputs

valid blocks on two chains: the blocks {Oi }n
1
on its own chain, and

the blocks {Ci }t
1
on the referenced chain. Moreover, the adversary

outputs a label l for the referenced chain, and a valid consistency

proof πconsist.
To win, the adversary also outputs a pointer ptr to one of its own

blocks such that the challenger has access to label l . The adversary
wins if the cross-referenced block m differs from the legitimate

cross referenced blocks {Ci }t
1
.

Theorem 6. For any polynomially-bounded stateful A it holds

that Pr [d = ⊤] = negl(λ), where d ∈ {⊤,⊥} is the result of DetEq
game (Experiment 5).

Proof. Suppose the adversary wins the game. Let i be the index
such that ptr corresponds to block Oi . Since the adversary wins,

m = GetClaim(sk‘challenger’
DH

, l , ptr, store′)

returned a messagem < {Ci }t
1
. Let h be the VRF hash that it com-

putes in step 5, and let ci = c̄i ∥ comi be the encoded claim that

this algorithm retrieves in step 6. In step 7, the algorithm calls

DecClaim(), to verify the proof π . Since the proof is valid, comi
commits to Hq (m) and hi is the VRF hash of l ∥ noncei .

We now show that CheckConsistency() retrieves the same

commitment comi together with a proof that the committed value

x ′ ∈ {Hq (Ci )}t
1
, contradicting the binding property of the commit-

ment scheme.

The proof πconsist contains the VRF hash h′i of l ∥ noncei and
the proof of correctness π

(i)
h . Since the proof verified, h′i is the VRF

hash of l ∥ noncei , and therefore h′i = hi . By the unique resolution

Experiment 5 Detectable inter-block equivocation

InterBlockEqDetection
A (λ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup

AU(‘challenger’) ▷ Initialize the challenger’s chain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adversary-supplied blocks and validation of consistency

{Oi }n
1
, {Ci }t

1
, store, l ,πconsist←AAU(·),EC(·)()

if ValidateBlocks({Oi }n
1
) = ⊥ then return 0

if ValidateBlocks({Ci }t
1
) = ⊥ then return 0

if CheckConsistency(l , {Oi }n
1
, {Ci }t

1
,πconsist) = ⊥ then

return 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Final read phase

ptr, store′←A()
if Get(store′, ptr) < {Oi }n

1
then return 0

m← GetClaim(sk
‘challenger’

DH
, l , ptr, store′)

returnm < {Ci }t
1

property of the tree, CheckConsistency() therefore derived the

same encoded claim ci = c̄i ∥ comi as the challenger did by calling

GetClaim(). Moreover, the proof π
(i)
ref

proves that comi commits

to x ′ such that x ′ ∈ {Hq (Ci )}t
1
.

This contradicts the binding property of the commitment scheme

or the soundness of the zero-knowledge proofs. □
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