291 research outputs found

    Backward walking training improves balance in school-aged boys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls remain a major cause of childhood morbidity and mortality. It is suggested that backward walking (BW) may offer some benefits especially in balance and motor control ability beyond those experienced through forward walking (FW), and may be a potential intervention for prevention of falls. The objective of this study was to investigate the effects of BW on balance in boys.</p> <p>Methods</p> <p>Sixteen healthy boys (age: 7.19 ± 0.40 y) were randomly assigned to either an experimental or a control group. The experimental group participated in a BW training program (12-week, 2 times weekly, and 25-min each time) but not the control group. Both groups had five dynamic balance assessments with a Biodex Stability System (anterior/posterior, medial/lateral, and overall balance index) before, during and after the training (week- 0, 4, 8, 12, 24). Six control and six experimental boys participated in a study comparing kinematics of lower limbs between FW and BW after the training (week-12).</p> <p>Results</p> <p>The balance of experimental group was better than that of control group after 8 weeks of training (<it>P </it>< 0.01), and was still better than that of control group (<it>P </it>< 0.05), when the BW training program had finished for 12 weeks. The kinematic analysis indicated that there was no difference between control and experimental groups in the kinematics of both FW and BW gaits after the BW training (<it>P </it>> 0.05). Compared to FW, the duration of stance phase of BW tended to be longer, while the swing phase, stride length, walking speed, and moving ranges of the thigh, calf and foot of BW decreased (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Backward walking training in school-aged boys can improve balance.</p

    European Project on Osteoarthritis (EPOSA): methodological challenges in harmonization of existing data from five European population-based cohorts on aging

    Get PDF
    BackgroundThe European Project on OSteoArthritis (EPOSA), here presented for the first time, is a collaborative study involving five European cohort studies on aging. This project focuses on the personal and societal burden and its determinants of osteoarthritis (OA). The aim of the current report is to describe the purpose of the project, the post harmonization of the cross-national data and methodological challenges related to the harmonization process MethodsThe study includes data from cohort studies in five European countries (Germany, Italy, the Netherlands, Spain and the United Kingdom) on older community-dwelling persons aged ? 59 years. The study design and main characteristics of the five cohort studies are described. Post harmonization algorithms are developed by finding a "common denominator" to merge the datasets and weights are calculated to adjust for differences in age and sex distribution across the datasets. ResultsA harmonized database was developed, consisting of merged data from all participating countries. In total, 10107 persons are included in the harmonized dataset with a mean age of 72.8 years (SD 6.1). The female/male ratio is 53.3/46.7%. Some variables were difficult to harmonize due to differences in wording and categories, differences in classifications and absence of data in some countries. The post harmonization algorithms are described in detail in harmonization guidelines attached to this paper. ConclusionsThere was little evidence of agreement on the use of several core data collection instruments, in particular on the measurement of OA. The heterogeneity of OA definitions hampers comparing prevalence rates of OA, but other research questions can be investigated using high quality harmonized data. By publishing the harmonization guidelines, insight is given into (the interpretation of) all post harmonized data of the EPOSA study. <br/

    Lower trunk motion and speed-dependence during walking

    Get PDF
    Abstract Background There is a limited understanding about how gait speed influences the control of upper body motion during walking. Therefore, the primary purpose of this study was to examine how gait speed influences healthy individual's lower trunk motion during overground walking. The secondary purpose was to assess if Principal Component Analysis (PCA) can be used to gain further insight into postural responses that occur at different walking speeds. Methods Thirteen healthy subjects (23 ± 3 years) performed 5 straight-line walking trials at self selected slow, preferred, and fast walking speeds. Accelerations of the lower trunk were measured in the anterior-posterior (AP), vertical (VT), and mediolateral (ML) directions using a triaxial accelerometer. Stride-to-stride acceleration amplitude, regularity and repeatability were examined with RMS acceleration, Approximate Entropy and Coefficient of Multiple determination respectively. Coupling between acceleration directions were calculated using Cross Approximate Entropy. PCA was used to reveal the dimensionality of trunk accelerations during walking at slow and preferred speeds, and preferred and fast speeds. Results RMS acceleration amplitude increased with gait speed in all directions. ML and VT trunk accelerations had less signal regularity and repeatability during the slow compared to preferred speed. However, stride-to-stride acceleration regularity and repeatability did not differ between the preferred and fast walking speed conditions, partly due to an increase in coupling between frontal plane accelerations. The percentage of variance accounted for by each trunk acceleration Principal Component (PC) did not differ between grouped slow and preferred, and preferred and fast walking speed acceleration data. Conclusion The main finding of this study was that walking at speeds slower than preferred primarily alters lower trunk accelerations in the frontal plane. Despite greater amplitudes of trunk acceleration at fast speeds, the lack of regularity and repeatability differences between preferred and fast speeds suggest that features of trunk motion are preserved between the same conditions. While PCA indicated that features of trunk motion are preserved between slow and preferred, and preferred and fast speeds, the discriminatory ability of PCA to detect speed-dependent differences in walking patterns is limited compared to measures of signal regularity, repeatability, and coupling.</p

    Six-week high-intensity exercise program for middle-aged patients with knee osteoarthritis: a randomized controlled trial [ISRCTN20244858]

    Get PDF
    BACKGROUND: Studies on exercise in knee osteoarthritis (OA) have focused on elderly subjects. Subjects in this study were middle-aged with symptomatic and definite radiographic knee osteoarthritis. The aim was to test the effects of a short-term, high-intensity exercise program on self-reported pain, function and quality of life. METHODS: Patients aged 36–65, with OA grade III (Kellgren & Lawrence) were recruited. They had been referred for radiographic examination due to knee pain and had no history of major knee injury. They were randomized to a twice weekly supervised one hour exercise intervention for six weeks, or to a non-intervention control group. Exercise was performed at ≥ 60% of maximum heart rate (HR max). The primary outcome measure was the Knee injury and Osteoarthritis Outcome Score (KOOS). Follow-up occurred at 6 weeks and 6 months. RESULTS: Sixty-one subjects (mean age 56 (SD 6), 51 % women, mean BMI 29.5 (SD 4.8)) were randomly assigned to intervention (n = 30) or control group (n = 31). No significant differences in the KOOS subscales assessing pain, other symptoms, or function in daily life or in sport and recreation were seen at any time point between exercisers and controls. In the exercise group, an improvement was seen at 6 weeks in the KOOS subscale quality of life compared to the control group (mean change 4.0 vs. -0.7, p = 0.05). The difference between groups was still persistent at 6 months (p = 0.02). CONCLUSION: A six-week high-intensive exercise program had no effect on pain or function in middle-aged patients with moderate to severe radiographic knee OA. Some effect was seen on quality of life in the exercise group compared to the control group
    corecore