178 research outputs found

    Precision high voltage divider for the KATRIN experiment

    Get PDF

    Precision high voltage divider for the KATRIN experiment

    Full text link
    The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims to determine the absolute mass of the electron antineutrino from a precise measurement of the tritium beta-spectrum near its endpoint at 18.6 keV with a sensitivity of 0.2 eV. KATRIN uses an electrostatic retardation spectrometer of MAC-E filter type for which it is crucial to monitor high voltages of up to 35 kV with a precision and long-term stability at the ppm level. Since devices capable of this precision are not commercially available, a new high voltage divider for direct voltages of up to 35 kV has been designed, following the new concept of the standard divider for direct voltages of up to 100 kV developed at the Physikalisch-Technische Bundesanstalt (PTB). The electrical and mechanical design of the divider, the screening procedure for the selection of the precision resistors, and the results of the investigation and calibration at PTB are reported here. During the latter, uncertainties at the low ppm level have been deduced for the new divider, thus qualifying it for the precision measurements of the KATRIN experiment.Comment: 22 pages, 12 figure

    Technical design and commissioning of the KATRIN large-volume air coil system

    Get PDF
    The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β\beta-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β\beta-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.Comment: 32 pages, 16 figure

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus

    Get PDF
    Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to rubins , bleaching , photoisomerization , or perturbation with bulky substituents. Pigments containing modified chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the (aß)-protomers of these pigments to higher aggregates. The results demonstrate a pronounced effect of the state of the chromophores on biliprotein quaternary structure. It may be important in phycobi1isome assembly , and also in the dual function of biliproteins as (i) antenna pigments for photosynthesis and (ii) reaction centers for photomor-phogenesis

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    Project 8 Phase III Design Concept

    Get PDF
    We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of 2 eV2~\mathrm{eV} (90 %90~\% C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail.Comment: 3 pages, 3 figures, Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    A novel ppm-precise absolute calibration method for precision high-voltage dividers

    Get PDF
    The most common method to measure direct current high voltage (HV) down to the ppm-level is to use resistive high-voltage dividers. Such devices scale the HV into a range where it can be compared with precision digital voltmeters to reference voltages sources, which can be traced back to Josephson voltage standards. So far the calibration of the scale factors of HV dividers for voltages above 1 kV could only be done at metrology institutes and sometimes involves round-robin tests among several institutions to get reliable results. Here we present a novel absolute calibration method based on the measurement of a differential scale factor, which can be performed with commercial equipment and outside metrology institutes. We demonstrate that reproducible measurements up to 35 kV can be performed with relative uncertainties below 1 · 106^{-6}. This method is not restricted to metrology institutes and offers the possibility to determine the linearity of high-voltage dividers for a wide range of applications
    corecore