20 research outputs found

    Local Adaptation of Aboveground Herbivores towards Plant Phenotypes Induced by Soil Biota

    Get PDF
    Background: Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. Methodology and Principal Findings: We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. Conclusion/Significance: These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitativ

    Elemental composition of arbuscular mycorrhizal fungi at high salinity.

    No full text
    We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts
    corecore