7,035 research outputs found

    Wall Adhesion and Constitutive Modelling of Strong Colloidal Gels

    Full text link
    Wall adhesion effects during batch sedimentation of strongly flocculated colloidal gels are commonly assumed to be negligible. In this study in-situ measurements of colloidal gel rheology and solids volume fraction distribution suggest the contrary, where significant wall adhesion effects are observed in a 110mm diameter settling column. We develop and validate a mathematical model for the equilibrium stress state in the presence of wall adhesion under both viscoplastic and viscoelastic constitutive models. These formulations highlight fundamental issues regarding the constitutive modeling of colloidal gels, specifically the relative utility and validity of viscoplastic and viscoelastic rheological models under arbitrary tensorial loadings. The developed model is validated against experimental data, which points toward a novel method to estimate the shear and compressive yield strength of strongly flocculated colloidal gels from a series of equilibrium solids volume fraction profiles over various column widths.Comment: 37 pages, 12 figures, submitted to Journal of Rheolog

    Observational Tests and Predictive Stellar Evolution II: Non-standard Models

    Full text link
    We examine contributions of second order physical processes to results of stellar evolution calculations amenable to direct observational testing. In the first paper in the series (Young et al. 2001) we established baseline results using only physics which are common to modern stellar evolution codes. In the current paper we establish how much of the discrepancy between observations and baseline models is due to particular elements of new physics. We then consider the impact of the observational uncertainties on the maximum predictive accuracy achievable by a stellar evolution code. The sun is an optimal case because of the precise and abundant observations and the relative simplicity of the underlying stellar physics. The Standard Model is capable of matching the structure of the sun as determined by helioseismology and gross surface observables to better than a percent. Given an initial mass and surface composition within the observational errors, and no additional constraints for which the models can be optimized, it is not possible to predict the sun's current state to better than ~7%. Convectively induced mixing in radiative regions, seen in multidimensional hydrodynamic simulations, dramatically improves the predictions for radii, luminosity, and apsidal motions of eclipsing binaries while simultaneously maintaining consistency with observed light element depletion and turnoff ages in young clusters (Young et al. 2003). Systematic errors in core size for models of massive binaries disappear with more complete mixing physics, and acceptable fits are achieved for all of the binaries without calibration of free parameters. The lack of accurate abundance determinations for binaries is now the main obstacle to improving stellar models using this type of test.Comment: 33 pages, 8 figures, accepted for publication in the Astrophysical Journa

    The development and application of time resolved PIV at the University of Strathclyde

    Get PDF
    This paper describes the development of time resolved particle image velocimetry (PIV) within the Department of Mechanical Engineering at the University of Strathclyde. The Department's first PIV systems were developed on a limited budget and used existing and second hand equipment. The original technique which, employed 16mm high speed cinematography, is described. The introduction and development of low cost systems employing high speed digital video (HSDV) is discussed and, finally, the Department's new time resolved PIV system, supplied by Dantec Dynamics, is introduced. For each of the PIV systems that have been developed a critical analysis of their functionality is given and samples of the data that they have been produced are shown. Data are presented from systems such as de-rotated centrifugal impellers, air bubbles growing in columns of water, pulsatile jets and vortex shedding

    Tomographic Separation of Composite Spectra. IX. The Massive Close Binary HD 115071

    Get PDF
    We present the first orbital elements for the massive close binary, HD 115071, a double-lined spectroscopic binary in a circular orbit with a period of 2.73135 +/- 0.00003 days. The orbital semiamplitudes indicate a mass ratio of M_2/M_1 = 0.58 +/- 0.02 and yet the stars have similar luminosities. We used a Doppler tomography algorithm to reconstruct the individual component optical spectra, and we applied well known criteria to arrive at classifications of O9.5 V and B0.2 III for the primary and secondary, respectively. We present models of the Hipparcos light curve of the ellipsoidal variations caused by the tidal distortion of the secondary, and the best fit model for a Roche-filling secondary occurs for an inclination of i = 48.7 +/- 2.1 degrees. The resulting masses are 11.6 +/- 1.1 and 6.7 +/- 0.7 solar masses for the primary and secondary, respectively, so that both stars are very overluminous for their mass. The system is one of only a few known semi-detached, Algol-type binaries that contain O-stars. We suggest that the binary has recently emerged from extensive mass transfer (possibly through a delayed contact and common envelope process).Comment: Submitted to Ap

    The yellow hypergiants HR 8752 and rho Cassiopeiae near the evolutionary border of instability

    Get PDF
    High-resolution near-ultraviolet spectra of the yellow hypergiants HR 8752 and rho Cassiopeiae indicate high effective temperatures placing both stars near the T_eff border of the ``yellow evolutionary void''. At present, the temperature of HR 8752 is higher than ever. For this star we found Teff=7900+-200 K, whereas rho Cassiopeiae has Teff=7300+-200 K. Both, HR 8752 and rho Cassiopeiae have developed strong stellar winds with Vinf ~ 120 km/s and Vinf ~ 100 km/s, respectively. For HR 8752 we estimate an upper limit for the spherically symmetric mass-loss of 6.7X10^{-6}M_solar/yr. Over the past decades two yellow hypergiants appear to have approached an evolutionary phase, which has never been observed before. We present the first spectroscopic evidence of the blueward motion of a cool super/hypergiant on the HR diagram.Comment: 13 pages including 3 figures. Accepted for publication in ApJ Letter

    Radial Velocities of Six OB Stars

    Full text link
    We present new results from a radial velocity study of six bright OB stars with little or no prior measurements. One of these, HD 45314, may be a long-period binary, but the velocity variations of this Be star may be related to changes in its circumstellar disk. Significant velocity variations were also found for HD 60848 (possibly related to nonradial pulsations) and HD 61827 (related to wind variations). The other three targets, HD 46150, HD 54879, and HD 206183, are constant velocity objects, but we note that HD 54879 has Hα\alpha emission that may originate from a binary companion. We illustrate the average red spectrum of each target.Comment: Accepted for publication in PASP July 2007 issu

    Measurement of the CMS Magnetic Field

    Full text link
    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference

    The Long Period, Massive Binaries HD 37366 and HD 54662: Potential Targets for Long Baseline Optical Interferometry

    Full text link
    We present the results from an optical spectroscopic analysis of the massive stars HD 37366 and HD 54662. We find that HD 37366 is a double-lined spectroscopic binary with a period of 31.8187 +/- 0.0004 days, and HD 54662 is also a double lined binary with a much longer period of 557.8 +/- 0.3 days. The primary of HD 37366 is classified as O9.5 V, and it contributes approximately two-thirds of the optical flux. The less luminous secondary is a broad-lined, early B-type main-sequence star. Tomographic reconstruction of the individual spectra of HD 37366 reveals absorption lines present in each component, enabling us to constrain the nature of the secondary and physical characteristics of both stars. Tomographic reconstruction was not possible for HD 54662; however, we do present mean spectra from our observations that show that the secondary component is approximately half as bright as the primary. The observed spectral energy distributions (SEDs) were fit with model SEDs and galactic reddening curves to determine the angular sizes of the stars. By assuming radii appropriate for their classifications, we determine distance ranges of 1.4 - 1.9 and 1.2 - 1.5 kpc for HD 37366 and HD 54662, respectively.Comment: 27 pages, 8 figures, Accepted for publication in Ap

    A Spectroscopic Study of Field and Runaway OB Stars

    Full text link
    Identifying binaries among runaway O- and B-type stars offers valuable insight into the evolution of open clusters and close binary stars. Here we present a spectroscopic investigation of 12 known or suspected binaries among field and runaway OB stars. We find new orbital solutions for five single-lined spectroscopic binaries (HD 1976, HD 14633, HD 15137, HD 37737, and HD 52533), and we classify two stars thought to be binaries (HD 30614 and HD 188001) as single stars. In addition, we reinvestigate their runaway status using our new radial velocity data with the UCAC2 proper motion catalogs. Seven stars in our study appear to have been ejected from their birthplaces, and at least three of these runaways are spectroscopic binaries and are of great interest for future study.Comment: 21 pages, 1 figure, 7 tables; Accepted to Ap

    The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel

    Get PDF
    We report new radial velocity observations of GP Vel/HD77581, the optical companion to the eclipsing X-ray pulsar Vela X-1. Using data spanning more than two complete orbits of the system, we detect evidence for tidally induced non-radial oscillations on the surface of GP Vel, apparent as peaks in the power spectrum of the residuals to the radial velocity curve fit. By removing the effect of these oscillations (to first order) and binning the radial velocities, we have determined the semi-amplitude of the radial velocity curve of GP Vel to be K_o=22.6+/-1.5 km/s. Given the accurately measured semi-amplitude of the pulsar's orbit, the mass ratio of the system is 0.081+/-0.005. We are able to set upper and lower limits on the masses of the component stars as follows. Assuming GP Vel fills its Roche lobe then the inclination angle of the system, i=70.1+/-2.6 deg. In this case we obtain the masses of the two stars as M_x=2.27 +/-0.17 M_sun for the neutron star and M_o=27.9+/-1.3 M_sun for GP Vel. Conversely, assuming the inclination angle is i=90 deg, the ratio of the radius of GP Vel to the radius of its Roche lobe is beta=0.89+/-0.03 and the masses of the two stars are M_x=1.88+/-0.13 M_sun and M_o=23.1+/-0.2 M_sun. A range of solutions between these two sets of limits is also possible, corresponding to other combinations of i and beta. In addition, we note that if the zero phase of the radial velocity curve is allowed as a free parameter, rather than constrained by the X-ray ephemeris, a significantly improved fit is obtained with an amplitude of 21.2+/-0.7 km/s and a phase shift of 0.033+/-0.007 in true anomaly. The apparent shift in the zero phase of the radial velocity curve may indicate the presence of an additional radial velocity component at the orbital period.Comment: Accepted for publication in Astronomy & Astrophysic
    • …
    corecore