7,035 research outputs found
Wall Adhesion and Constitutive Modelling of Strong Colloidal Gels
Wall adhesion effects during batch sedimentation of strongly flocculated
colloidal gels are commonly assumed to be negligible. In this study in-situ
measurements of colloidal gel rheology and solids volume fraction distribution
suggest the contrary, where significant wall adhesion effects are observed in a
110mm diameter settling column. We develop and validate a mathematical model
for the equilibrium stress state in the presence of wall adhesion under both
viscoplastic and viscoelastic constitutive models. These formulations highlight
fundamental issues regarding the constitutive modeling of colloidal gels,
specifically the relative utility and validity of viscoplastic and viscoelastic
rheological models under arbitrary tensorial loadings. The developed model is
validated against experimental data, which points toward a novel method to
estimate the shear and compressive yield strength of strongly flocculated
colloidal gels from a series of equilibrium solids volume fraction profiles
over various column widths.Comment: 37 pages, 12 figures, submitted to Journal of Rheolog
Observational Tests and Predictive Stellar Evolution II: Non-standard Models
We examine contributions of second order physical processes to results of
stellar evolution calculations amenable to direct observational testing. In the
first paper in the series (Young et al. 2001) we established baseline results
using only physics which are common to modern stellar evolution codes. In the
current paper we establish how much of the discrepancy between observations and
baseline models is due to particular elements of new physics. We then consider
the impact of the observational uncertainties on the maximum predictive
accuracy achievable by a stellar evolution code. The sun is an optimal case
because of the precise and abundant observations and the relative simplicity of
the underlying stellar physics. The Standard Model is capable of matching the
structure of the sun as determined by helioseismology and gross surface
observables to better than a percent. Given an initial mass and surface
composition within the observational errors, and no additional constraints for
which the models can be optimized, it is not possible to predict the sun's
current state to better than ~7%. Convectively induced mixing in radiative
regions, seen in multidimensional hydrodynamic simulations, dramatically
improves the predictions for radii, luminosity, and apsidal motions of
eclipsing binaries while simultaneously maintaining consistency with observed
light element depletion and turnoff ages in young clusters (Young et al. 2003).
Systematic errors in core size for models of massive binaries disappear with
more complete mixing physics, and acceptable fits are achieved for all of the
binaries without calibration of free parameters. The lack of accurate abundance
determinations for binaries is now the main obstacle to improving stellar
models using this type of test.Comment: 33 pages, 8 figures, accepted for publication in the Astrophysical
Journa
The development and application of time resolved PIV at the University of Strathclyde
This paper describes the development of time resolved particle image velocimetry (PIV) within the Department of Mechanical Engineering at the University of Strathclyde. The Department's first PIV systems were developed on a limited budget and used existing and second hand equipment. The original technique which, employed 16mm high speed cinematography, is described. The introduction and development of low cost systems employing high speed digital video (HSDV) is discussed and, finally, the Department's new time resolved PIV system, supplied by Dantec Dynamics, is introduced. For each of the PIV systems that have been developed a critical analysis of their functionality is given and samples of the data that they have been produced are shown. Data are presented from systems such as de-rotated centrifugal impellers, air bubbles growing in columns of water, pulsatile jets and vortex shedding
Tomographic Separation of Composite Spectra. IX. The Massive Close Binary HD 115071
We present the first orbital elements for the massive close binary, HD
115071, a double-lined spectroscopic binary in a circular orbit with a period
of 2.73135 +/- 0.00003 days. The orbital semiamplitudes indicate a mass ratio
of M_2/M_1 = 0.58 +/- 0.02 and yet the stars have similar luminosities. We used
a Doppler tomography algorithm to reconstruct the individual component optical
spectra, and we applied well known criteria to arrive at classifications of
O9.5 V and B0.2 III for the primary and secondary, respectively. We present
models of the Hipparcos light curve of the ellipsoidal variations caused by the
tidal distortion of the secondary, and the best fit model for a Roche-filling
secondary occurs for an inclination of i = 48.7 +/- 2.1 degrees. The resulting
masses are 11.6 +/- 1.1 and 6.7 +/- 0.7 solar masses for the primary and
secondary, respectively, so that both stars are very overluminous for their
mass. The system is one of only a few known semi-detached, Algol-type binaries
that contain O-stars. We suggest that the binary has recently emerged from
extensive mass transfer (possibly through a delayed contact and common envelope
process).Comment: Submitted to Ap
The yellow hypergiants HR 8752 and rho Cassiopeiae near the evolutionary border of instability
High-resolution near-ultraviolet spectra of the yellow hypergiants HR 8752
and rho Cassiopeiae indicate high effective temperatures placing both stars
near the T_eff border of the ``yellow evolutionary void''. At present, the
temperature of HR 8752 is higher than ever. For this star we found
Teff=7900+-200 K, whereas rho Cassiopeiae has Teff=7300+-200 K. Both, HR 8752
and rho Cassiopeiae have developed strong stellar winds with Vinf ~ 120 km/s
and Vinf ~ 100 km/s, respectively. For HR 8752 we estimate an upper limit for
the spherically symmetric mass-loss of 6.7X10^{-6}M_solar/yr. Over the past
decades two yellow hypergiants appear to have approached an evolutionary phase,
which has never been observed before. We present the first spectroscopic
evidence of the blueward motion of a cool super/hypergiant on the HR diagram.Comment: 13 pages including 3 figures. Accepted for publication in ApJ Letter
Radial Velocities of Six OB Stars
We present new results from a radial velocity study of six bright OB stars
with little or no prior measurements. One of these, HD 45314, may be a
long-period binary, but the velocity variations of this Be star may be related
to changes in its circumstellar disk. Significant velocity variations were also
found for HD 60848 (possibly related to nonradial pulsations) and HD 61827
(related to wind variations). The other three targets, HD 46150, HD 54879, and
HD 206183, are constant velocity objects, but we note that HD 54879 has
H emission that may originate from a binary companion. We illustrate
the average red spectrum of each target.Comment: Accepted for publication in PASP July 2007 issu
Measurement of the CMS Magnetic Field
The measurement of the magnetic field in the tracking volume inside the
superconducting coil of the Compact Muon Solenoid (CMS) detector under
construction at CERN is done with a fieldmapper designed and produced at
Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at
NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The
precise fieldmapper measurements are done in 33840 points inside a cylinder of
1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three
components of the magnetic flux density at the CMS coil maximum excitation and
the remanent fields on the steel-air interface after discharge of the coil are
measured in check-points with 95 3-D B-sensors located near the magnetic flux
return yoke elements. Voltages induced in 22 flux-loops made of 405-turn
installed on selected segments of the yoke are sampled online during the entire
fast discharge (190 s time-constant) of the CMS coil and integrated offline to
provide a measurement of the initial magnetic flux density in steel at the
maximum field to an accuracy of a few percent. The results of the measurements
made at 4 T are reported and compared with a three-dimensional model of the CMS
magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference
The Long Period, Massive Binaries HD 37366 and HD 54662: Potential Targets for Long Baseline Optical Interferometry
We present the results from an optical spectroscopic analysis of the massive
stars HD 37366 and HD 54662. We find that HD 37366 is a double-lined
spectroscopic binary with a period of 31.8187 +/- 0.0004 days, and HD 54662 is
also a double lined binary with a much longer period of 557.8 +/- 0.3 days. The
primary of HD 37366 is classified as O9.5 V, and it contributes approximately
two-thirds of the optical flux. The less luminous secondary is a broad-lined,
early B-type main-sequence star. Tomographic reconstruction of the individual
spectra of HD 37366 reveals absorption lines present in each component,
enabling us to constrain the nature of the secondary and physical
characteristics of both stars. Tomographic reconstruction was not possible for
HD 54662; however, we do present mean spectra from our observations that show
that the secondary component is approximately half as bright as the primary.
The observed spectral energy distributions (SEDs) were fit with model SEDs and
galactic reddening curves to determine the angular sizes of the stars. By
assuming radii appropriate for their classifications, we determine distance
ranges of 1.4 - 1.9 and 1.2 - 1.5 kpc for HD 37366 and HD 54662, respectively.Comment: 27 pages, 8 figures, Accepted for publication in Ap
A Spectroscopic Study of Field and Runaway OB Stars
Identifying binaries among runaway O- and B-type stars offers valuable
insight into the evolution of open clusters and close binary stars. Here we
present a spectroscopic investigation of 12 known or suspected binaries among
field and runaway OB stars. We find new orbital solutions for five single-lined
spectroscopic binaries (HD 1976, HD 14633, HD 15137, HD 37737, and HD 52533),
and we classify two stars thought to be binaries (HD 30614 and HD 188001) as
single stars. In addition, we reinvestigate their runaway status using our new
radial velocity data with the UCAC2 proper motion catalogs. Seven stars in our
study appear to have been ejected from their birthplaces, and at least three of
these runaways are spectroscopic binaries and are of great interest for future
study.Comment: 21 pages, 1 figure, 7 tables; Accepted to Ap
The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel
We report new radial velocity observations of GP Vel/HD77581, the optical
companion to the eclipsing X-ray pulsar Vela X-1. Using data spanning more than
two complete orbits of the system, we detect evidence for tidally induced
non-radial oscillations on the surface of GP Vel, apparent as peaks in the
power spectrum of the residuals to the radial velocity curve fit. By removing
the effect of these oscillations (to first order) and binning the radial
velocities, we have determined the semi-amplitude of the radial velocity curve
of GP Vel to be K_o=22.6+/-1.5 km/s. Given the accurately measured
semi-amplitude of the pulsar's orbit, the mass ratio of the system is
0.081+/-0.005. We are able to set upper and lower limits on the masses of the
component stars as follows. Assuming GP Vel fills its Roche lobe then the
inclination angle of the system, i=70.1+/-2.6 deg. In this case we obtain the
masses of the two stars as M_x=2.27 +/-0.17 M_sun for the neutron star and
M_o=27.9+/-1.3 M_sun for GP Vel. Conversely, assuming the inclination angle is
i=90 deg, the ratio of the radius of GP Vel to the radius of its Roche lobe is
beta=0.89+/-0.03 and the masses of the two stars are M_x=1.88+/-0.13 M_sun and
M_o=23.1+/-0.2 M_sun. A range of solutions between these two sets of limits is
also possible, corresponding to other combinations of i and beta. In addition,
we note that if the zero phase of the radial velocity curve is allowed as a
free parameter, rather than constrained by the X-ray ephemeris, a significantly
improved fit is obtained with an amplitude of 21.2+/-0.7 km/s and a phase shift
of 0.033+/-0.007 in true anomaly. The apparent shift in the zero phase of the
radial velocity curve may indicate the presence of an additional radial
velocity component at the orbital period.Comment: Accepted for publication in Astronomy & Astrophysic
- …