284 research outputs found

    Germanium as a material for stimulated Brillouin scattering in the mid-infrared

    Full text link
    © 2014 Optical Society of America. In a theoretical design study, we propose buried waveguides made of germanium or alloys of germanium and other group-IV elements as a CMOS-compatible platform for robust, high-gain stimulated Brillouin scattering (SBS) applications in the mid-infrared regime. To this end, we present numerical calculations for backward-SBS at 4mm in germanium waveguides that are buried in silicon nitride. Due to the strong photoelastic anisotropy of germanium, we investigate two different orientations of the germanium crystal with respect to the waveguide's propagation direction and find considerable differences. The acoustic wave equation is solved including crystal anisotropy; acoustic losses are computed from the acoustic mode patterns and previously published material parameters

    Ethical Perspectives and Practice Behaviors Involving Computer-Based Test Interpretation

    Full text link
    The debates of the 1980s regarding responsible use of computer-based test interpretation (CBTI) software have mostly disappeared, as CBTI use has become common practice. We surveyed 364 members of the Society for Personality Assessment to determine how they use CBTI software in their work and their perspectives on the ethics of using CBTI in various ways. Psychologists commonly use CBTI software for test scoring and to provide a complementary source of input for case formulations. Most do not use CBTI software as the primary way to formulate a case, nor as an alternative to a written report. Controversy and uncertainty were expressed about importing sections of CBTI narratives into psychological reports. We distinguish between support and replacement functions of CBTI use, arguing that adequate research evidence should be present before using CBTI as a replacement for established assessment procedures

    Electroluminescence efficiency enhancement using metal nanoparticles

    Get PDF
    We apply the “effective mode volume” theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays. Using the example of an InGaN/GaN quantum-well active region positioned in close proximity to Ag nanospheres, we show that while the enhancement due to isolated metal nanoparticles is large, only modest enhancement can be obtained with ordered array of those particles. We further conclude that random assembly of isolated particles holds an advantage over the ordered arrays for light emitting devices of finite area

    Practical enhancement of photoluminescence by metal nanoparticles

    Get PDF
    We develop a simple yet rigorous theory of the photoluminescence (PL) enhancement in the vicinity of metal nanoparticles. The enhancement takes place during both optical excitation and emission. The strong dependence on the nanoparticle size enables optimization for maximum PL efficiency. Using the example of InGaN quantum dots (QDs) positioned near Ag nanospheres embedded in GaN, we show that strong enhancement can be obtained only for those QDs, atoms, or molecules that are originally inefficient in absorbing as well as in emitting optical energy. We then discuss practical implications for sensor technology

    Practical limits of absorption enhancement near metal nanoparticles

    Get PDF
    We consider the enhanced absorption of optical radiation by molecules placed in the vicinity of spherical metal nanoparticles in the realistic situation that includes perturbation of the optical field by the absorbing molecules. We show that there is an optimal nanosphere radius that gives the strongest enhancement for each combination of the number of absorbing molecules, their absorption strength, and their distance from the nanosphere surface and that the enhancement is strong only for relatively weak and diluted absorbers

    Radiation emission from wrinkled SiGe/SiGe nanostructure

    Get PDF
    Semiconductor optical emitters radiate light via band-to-band optical transitions. Here, a different mechanism of radiation emission, which is not related to the energy band of the materials, is proposed. In the case of carriers traveling along a sinusoidal trajectory through a wrinkled nanostructure, radiation was emitted via changes in their velocity in a manner analogous to synchrotron radiation. The radiated frequency of wrinkled SiGe/SiGe nanostructure was found to cover a wide spectrum with radiation power levels of the order of submilliwatts. Thus, this nanostructure can be used as a Si-based optical emitter and it will enable the integration of optoelectronic devices on a wafer

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators

    Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions

    Get PDF
    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a “clean” offset of150 meV situated below other energy valleys (Γ,X). The entire structure is strain-free because the lattice-matched Ge and Ge0.76Si0.19Sn0.05 layers are to be grown on a relaxed Ge buffer layer on a Si substrate. Longer lifetimes due to the weaker scattering of nonpolar optical phonons reduce the threshold current and potentially lead to room temperature operation

    Carrier dynamics of terahertz emission based on strained SiGe/Si single quantum well

    Get PDF
    We report analysis of the carrier distribution during terahertz emission process with carrier–phonon interaction based on p-doped strained SiGe/Si single quantum-well. The results of this analysis show that a considerable number of carriers can penetrate the phonon wall to become “hot” carriers on an approximately picosecond timescale. These hot carriers relax after the removal of the applied voltage, generating a “second” emission in the measurement. This investigation provides an understanding of the carrier dynamics of terahertz emission and has an implication for the design of semiconductor terahertz emitters

    Infrared surface plasmons on heavily doped silicon

    Get PDF
    Conductors with infrared plasma frequencies are potentially useful hosts of surface plasmon polaritons (SPP) with sub-wavelength mode confinement for sensing applications. A challenge is to identify such a conductor that also has sharp SPP excitation resonances and the capability to be functionalized for biosensor applications. In this paper we present experimental and theoretical investigations of IR SPPs on doped silicon and their excitation resonances on doped-silicon gratings. The measured complex permittivity spectra for p-type silicon with carrier concentration 6 x 10(19) and 1 x 10(20) cm(-3) show that these materials should support SPPs beyond 11 and 6 mu m wavelengths, respectively. The permittivity spectra were used to calculate SPP mode heights above the silicon surface and SPP propagation lengths. Reasonable merit criteria applied to these quantities suggest that only the heaviest doped material has sensor potential, and then mainly within the wavelength range 6 to 10 mu m. Photon-to-plasmon coupling resonances, a necessary condition for sensing, were demonstrated near 10 mu m wavelength for this material. The shape and position of these resonances agree well with simple analytic calculations based on the theory of Hessel and Oliner (1965)
    • …
    corecore