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Semiconductor optical emitters radiate light via band-to-band optical transitions. Here, a different
mechanism of radiation emission, which is not related to the energy band of the materials, is
proposed. In the case of carriers traveling along a sinusoidal trajectory through a wrinkled
nanostructure, radiation was emitted via changes in their velocity in a manner analogous to
synchrotron radiation. The radiated frequency of wrinkled SiGe/SiGe nanostructure was found to
cover a wide spectrum with radiation power levels of the order of submilliwatts. Thus, this
nanostructure can be used as a Si-based optical emitter and it will enable the integration of
optoelectronic devices on a wafer. © 2010 American Institute of Physics. [doi:10.1063/1.3360881 ]

Semiconductor optical emitters radiate light via band-to-
band optical transitions wherein the electrons in the conduc-
tion band recombine with the holes in the valence band to
emit radiation characterized by the energy bandgap of the
material. The emission intensity of IV-IV compounds is rela-
tively weak as compared to III-V compounds owing to the
indirectness of the energy band in the momentum space.
Since the vast majority of electronic devices are made from
Si-based materials, clearly, Si-based optical emitters are in
demand for the integration of optoelectronic devices on a
wafer. These devices, if realized, would have significant
impact on the development of present semiconductor tech-
nology.

Here, a radiation mechanism different from the conven-
tional mechanism of conduction-to-valence optical transi-
tions is proposed; this mechanism is based on carriers
traveling through a wrinkled nanostructure, which was de-
veloped recently.l_3 Analysis is performed based on wrinkled
p-type SiGe/SiGe nanostructure, although the same effect oc-
curs in n-type structures as well. It is found that radiation is
emitted via changes in the velocity of the holes, in a manner
analogous to synchrotron radiation (electric dipole transi-
tions). The radiated frequency covers a wide spectrum and is
characterized by both the periodicity of the wrinkled nano-
structure and the velocity of the holes. The radiation power
in the infrared region estimated from the physical parameters
of a micron-scale p-MOS device with a wrinkle periodicity
of 0.1 um, is of the order of milliwatts. This result indicates
that the wrinkled nanostructure can be used as an optical
emitter. This study opens different avenues for research on
the use of thin films as emission sources, and it is a step
toward realizing Si-based optical emitters. Furthermore, such
a radiation mechanism applies to III-V and II-VI compounds
and the wavelength of emission no longer relies on the band
gap of the material provided that a selective etching tech-
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nique is developed to yield similar patterns of wrinkles.
First, we briefly describe the structure and the character-
istics of the wrinkled nanostructure. The structure consists of
two thin layers of Si,_,Ge,/Si,_,Ge, with different Ge com-
positions deposited on a Si buffer layer. Both layers are
p-type doped and are initially strained because of the lattice
mismatch between the Si buffer layer and the bilayer. By
removing the Si buffer layer using the standard semiconduc-
tor process of selective etching, the bilayer thin film is deb-
onded, resulting in a freestanding film. The freestanding film
relaxes through bending and stretching and eventually
reaches its equilibrium state, forming a wrinkled pattern. A
schematic plot of the pattern is depicted in Fig. 1. The free-
standing bilayer film has air between the pattern and the
silicon substrate. A detailed description of the fabrication
process and formation mechanism of the pattern is reported
elsewhere."” The morphology of the wrinkled pattern is
characterized by (a) the displacement in the growth direction
z(x,y), and (b) periodicity of the pattern (L,,). The displace-
ment can be expressed as a function of L, as z(x,y)
=Ag(y/h)sin kx, where k=2/L,, is the wrinkle wave num-
ber, A and h are the wrinkle amplitude and lateral ething

FIG. 1. (Color) Schematic plot of the wrinkled pattern. Holes (solid circle)
travel through a sinusoidal trajectory when a voltage is applied across the
wrinkled pattern.

© 2010 American Institute of Physics
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depth. Note that g(1)=1 at the free edge (at y=h) and g(0)
=0 in the bonded area.

The carriers (holes) in the bilayer film are initially con-
fined within a triangular potential that is formed at the
Si;_,Ge,/Si;_,Ge, interface, confined like a two-dimensional
hole gas. By placing a metal contact at both ends of the
wrinkled pattern, holes travel through the wrinkles when a
voltage is applied across the contacts (x-direction) as illus-
trated in Fig. 1. The velocity of the holes is obtained by
differentiating the displacement z(x,y) with respect to time,

v, =Akv, cos(kx), (1)

where v, and v, are the vertical (z) and horizontal (x) pro-
jections of the hole velocity, respectively, and follow the
condition,

vi+vi=Vy, ()

where V, is a constant average velocity of holes under the
influence of applied electric field.

Substituting Eq. (1) into Eq. (2), we determine v, and v,
as follows:

Vv
sz %’ (3)
V1 + Ak cos” kx
AkV , cos k.
: = (4)

1+ A%2 cos? kx|
Differentiating Egs. (1) and (2) with respect to time gives,

a.=Aka, cos kx — Ak*v? sin kx, (5)

va,+v.a,=0, (6)

where a, and a, are the horizontal (x) and vertical (z) pro-
jections, respectively, of the hole acceleration.
From Egs. (3), (4), and (6), it follows that,

a,=—Aka_ cos kx. (7)
Substituting Eqgs. (3) and (7) into Eq. (5) yields,
ARV sin kx
a,= d (8)

T (1 + A% cos? kx)?

Equation (8) shows that the hole, while it moves along the
free edge of the wrinkled film, undergoes harmonic motion
with frequency f given by,

f= Ux,m/Lw’ (9)

where v, , is the mean velocity over a wrinkle period.
Averaging Eq. (3) over the wrinkle wavelength and tak-
ing into account that A’k><<1', we get,

v, [t dx
Vom= L_WJ o V1 +A%k? cos? kx
= ﬁf’T(l —ﬂcosz d))dd): Vd<l —/ﬁ).
2m)y 2 4

(10)

Thus, the oscillating hole radiates a monochromatic wave ™

of the frequency,
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FIG. 2. Emission spectra for different wrinkle periodicities.

21,2
=ﬁ<1—/i>. (11)

As shown in Refs. 1 and 2, the product A%?* depends weakly
on the etching depth and is approximately 0.017. To a good
approximation, Eq. (11) can be simplified to yield the fre-
quency and wavelength of the radiation as,

f=t a=S (12
Lw Vd
where c is the speed of light in vacuum.
In the rest reference frame, the frequency f’ and wave-
length N’ of the emitted wave depend on (due to the Doppler
effect) the viewing direction given by the angle 6,

f _ (Vd/ Lw)

r= 1= (vy,/c)cos 0 1= (vy,,/c)cos O
c
)\’=Lw<——cos 0). (13)
vx,m

Equation (13) shows that, since v, ,,/c is negligibly small,
the radiated frequency depends on two factors: (a) the peri-
odicity of the wrinkled pattern as L' and (b) the hole aver-
age velocity V,. With respect to the former factor, as has
been shown in Refs. 1, 2, and 6, layers with various L,, can
be fabricated. Both the wavelength and amplitude of
wrinkles increase with the depth of etching and scale'? as
h%92_ Further, the hole velocity is proportional to the magni-
tude of the applied electric field (E) (V,=uE, where u is the
hole mobility, and its value depends on the quality of the
samples). The radiated frequency for various L,, is calculated
as a function of electric field ranging from 1 to 100 kV/cm.
The mobility is set to 1400 cm?/V s, which was deduced
from the average value of the bilayer film of
Sig 51Geq 49/ Sig goGeg 13 reported in Ref. 6, and the mobility
of each layer is linearly extrapolated from the bulk values of
Si and Ge. These results are plotted in Fig. 2. The spectrum
covers a wide range. For large L,, (=1 um), the device
emits long wavelengths on the centimeter scale. As L,, de-
creases, which can be achieved by reducing the lateral etch-
ing depth, the emitted wavelength becomes shorter. For L,,
=0.1 um, the emitted wavelengths lie mostly in the infrared
and visible regions.
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Next, the radiation power (P) for the electrical dipole
transition is derived. For a single hole following the wrinkled
trajectory, P can be estimated using the Larmor formula as’

TAKYV, 4 L PAY 7Vy
= f= o= 0018775, (14)
12megc” 3 goc’L,, goc’L;,

where ¢ is the carrier charge and g is the dielectric constant.
This shows that the radiation power also depends on the
periodicity of the wrinkled pattern as L;Z and hole velocity
as that of radiated frequency. To estimate P under the appli-
cation of current, we use the physical parameters of a con-
ventional p-MOS device on the micron scale operated at high
electrical field, that is, a saturation velocity V,=107 cm/s,
current of 1 mA, and L,,=0.1 um; a reasonable power on
the order of submilliwatts is obtained. This demonstrates that
the proposed nanostructure can be used as a tangible optical
emitter at the infrared region. Note that, by reducing period-
icity of the wrinkled nanostructure, not only the radiated fre-
quency shifts toward the visible region as shown in Fig. 2,
but radiation power also increases.

This study shows that radiation is emitted by the holes
traveling through the wrinkled SiGe/SiGe nanostructure. The
mechanism of radiation emission is not related to the indi-
rectness of the energy band and the bandgap of SiGe because
the radiation emission depends only on the velocity of holes
under an applied field and not on the conduction-to-valence
transitions. This mechanism can help remove the main ob-
stacle (indirectness in the energy band) in the use of group
IV compounds as emission sources. For a wrinkled nano-
structure with a fixed periodicity, the ability to tune the radi-
ated frequency according to the velocity of holes implies that
it can radiate light at different frequencies by changing the
applied voltage. (The carrier velocity is a function of the
applied voltage.) Thus, the proposed nanostructure offers a

Appl. Phys. Lett. 96, 113104 (2010)

practical advantage over the conventional optical emitters
that emit light with only a single frequency corresponding to
the bandgap.

To enable the practical implementation of the proposed
nanostructure as optical emitters, we should be able to fab-
ricate them in foundries using the current technology. As
these wrinkled structures are fabricated by the standard Si-
based processing technique by predefining the periodicity
and they are compatible with the present Si-based thin film
technology, they can be fabricated on a wafer. For using
optical emitters in the energy range of infrared and visible
regions, which is desired in many applications, the periodic-
ity of the wrinkled structure should be less than 0.1 um, as
discussed above. This can be easily achieved by reducing the
lateral etching depth2 using the deep submicron technology.
Thus, the proposed nanostructure could serve as tangible Si-
based optical emitters for the integration of optoelectronic
devices on a wafer.

The authors would like to thank the National Science
Council of the Republic of China for its financial support
under Grant No. 95-2112-M-002-050-MY3, AFOSR
(U.S.A.) under Grant No. 09-4108, and the Research Plan of
the Institute of Thermomechanics of ASCR, v.v.i., Project
No. AV0Z20760514.
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