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We consider the enhanced absorption of optical radiation by molecules placed in the vicinity of
spherical metal nanoparticles in the realistic situation that includes perturbation of the optical field
by the absorbing molecules. We show that there is an optimal nanosphere radius that gives the
strongest enhancement for each combination of the number of absorbing molecules, their absorption
strength, and their distance from the nanosphere surface and that the enhancement is strong only for
relatively weak and diluted absorbers. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3081631�

Recent years have witnessed an increased interest in
“nanoplasmonics” relevant to sensor applications. In this pa-
per, we discuss such applications and focus upon the in-
creased optical absorption that results when molecules are
placed near metal nanoparticles. This enhancement is part of
the general study of field modification obtained in the vicin-
ity of nanostructured metallic objects1,2 whose characteristic
features are much smaller than the optical wavelength. It has
been well understood that the enhancement of optical field is
associated with excitation of localized surface plasmon
�LSP� modes, and it has been established that diverse optical
effects can be enhanced near the resonantly excited metal
nanoparticles. Enhancements of radiative decay rates,3

fluorescence,4,5 Raman scattering,6 and others have been
demonstrated by numerous groups, and these experiments
have been supported by a large body of theoretical work.7,8

However, the actual numerical values of enhancement re-
ported in different experiments differ by orders of magnitude
and are often inconsistent with the theoretical or numerical
results. Furthermore, no clear understanding exists on how a
given effect can be maximized by optimizing the size and/or
shape of nanoparticles for a specified optically active atom,
molecule, or quantum-confined object such as quantum dot.
For the sake of generality, we refer to all these objects as
“molecules.” Often an electrostatic approach is used in
which the radiative decay is neglected, and this cannot be
valid in applications where highly efficient radiative cou-
pling is required. Following our previously developed model
for the surface plasmon polariton enhancement of
electroluminescence,9 we have started to develop a consis-
tent analytical approach to the plasmonic enhancement of
optical effects by considering the most basic phenomena of
radiative decay in the vicinity of metal nanoparticles.10 Our
approach, based on effective volume method pioneered by
Maier,11 considers the process of emission as a two-step pro-
gression; the first step being Purcell-enhanced emission of
energy into the LSP mode followed by the second step of
energy emission out of the LSP mode into free space. The
quantum efficiency of the first step requires the LSP mode to
be essentially a small volume high-Q cavity, while the quan-

tum efficiency of the second requires the same mode to be
nothing but a relatively large �up to � /2� low-Q optical an-
tenna. These two demands are difficult to reconcile; thus, for
each specified emitting molecule characterized by its own
original unenhanced radiative efficiency �0, one can find the
optimum size of nanoparticles that maximizes the radiative
efficiency enhancement. We have also shown that only for
those relatively inefficient �0�10% molecules, one can
achieve substantial efficiency enhancement, while for the
relatively efficient emitters the losses in the metal negate
whatever Purcell gain can be achieved.

We now turn our attention to the reverse problem, i.e.,
enhancement of the absorption by molecules placed in the
vicinity of metal nanoparticles. This issue is important
for two reasons. First of all, it had been proposed to use
metal nanoparticles to enhance the efficiency of
photo-detectors12,13 and solar panels,14,15 and second, absorp-
tion is the first step in the photoluminescence �PL� emission
of PL sensors and thus enhanced absorption means improved
sensitivity. The main goal of our work is to provide a rigor-
ous yet simple analytic estimate of the attainable enhance-
ment of absorption that takes into account all the radiative
and nonradiative losses and, most essential, provides the op-
timization routine for a given absorber characterized by its
original absorption strength. Rather unsurprisingly, we show
that the stronger the original absorption the less enhancement
is attainable and this fact leads to important practical conse-
quences.

Consider the absorption by a molecule located near a
metal nanosphere �here we consider only the spherical nano-
particles but our treatment can be easily expanded to take
account of different shapes�. The nanosphere is placed at the
waist of a Gaussian light beam focused onto the profile, as
shown in Fig. 1, with a numerical aperture characterized by a
far field half angle �. In the absence of the metal sphere, the
beam of small angle � will simply be focused onto a diffrac-
tion limited spot at the apex of the cone whose radius at the
waist w0=�d /��, where �dis the wavelength in the dielec-
tric.

In the absence of the nanosphere, the field in the focal
spot Efoc can be related to the power �s+�2 carried by the
incident wave as follows, using the notation in Ref. 16,a�Electronic mail: greg.sun@umb.edu.
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�s+�2 =
n

Z0
��w0

2
�2

Efoc
2 , �1�

where Z0 is the impedance of free space and n is the index of
refraction in the dielectric. In the presence of a metal sphere
with radius r, the incident light can be coupled into the LSP
mode with resonant frequency �0 and with an effective mode
volume10 Veff=4�r3�1+1 /2�D� /3 that produces maximum
field Emax at the surface of the sphere which is related to the
LSP mode energy �a�2 as

�a�2 = 1
2�0�DEmax

2 Veff, �2�

where �0 is the permittivity of free space and �D is the di-
electric constant of the medium.

In the two-step process of absorption, the first step is
coupling of energy from free space modes contained in the
focused beam into the LSP mode. This is a process reciprocal
to the radiative decay of the LSP mode into the free space
modes that are contained within the far field solid angle �,
which is characterized by the angle dependent decay rate
	rad

� =	rad�0
�f�� ,
�d�, where the angular frequency depen-

dence f�� ,
�=3�1−sin2 � cos2 
� /8� in the spherical sys-
tem �Fig. 1�, and the radiative decay rate into all radiation
modes at resonant frequency �0 is10

	rad 	 	rad
4� = �2�r

�D
�3 �0

1 + 2�D
. �3�

For small angles � we obtain
	rad

� 
 3
8	rad�

2, and then using the reciprocity discussed by
Haus16 that relates the in-coupling coefficient �in

� from the
light cone to the radiative decay rate 	rad

� of the LSP mode,
we obtain �in

�=�	rad
� 
�� /2��3	rad /2. Now we arrive at the

rate equation for the amplitude a of the LSP,

da

dt
= j�� − �0�a −

	nrad + 	rad

2
a +

�

2
�3	rad

2
s+, �4�

where the nonradiative decay rate of the LSP mode 	nrad
=	 with 	 being the metal loss in the Drude-model approxi-
mation for the metal dielectric dispersion. The steady state
solution of Eq. �4� at resonance yields

a =�3

2

	rad
1/2�

�	nrad + 	rad�
s+. �5�

Using relations �1� and �2�, we obtain the field intensity en-
hancement �and thus the absorption enhancement� factor

F =
Emax

2

Efoc
2 =

3�D
3

8�2Veff

Qrad
−1

�Qnrad
−1 + Qrad

−1 �2 , �6�

where we have introduced the Q-factors Qrad�nrad�
=�0 /	rad�nrad�. Note that Eq. �6� does not contain the angle
�—thus the enhancement does not depend on the focusing
scheme. From Eq. �3�, we have Qrad

−1 =�3 / �1+2�D�, where the
normalized radius �=2�r /�D. If we further normalize Qnrad
to Q=Qnrad / �1+2�D� and take into account that the actual
atom or molecule is situated at a distance d from the metal
sphere, we then obtain

F =
Emax

2

Efoc
2 =

9�D

2

1

��3 + Q−1�2� �

� + �d
�6

, �7�

where �d=2�d /�D. Clearly, in the limit of a very small
nanosphere the intensity enhancement becomes proportional
to Q2 as expected from simple electrostatic considerations. In
fact, the maximum enhancement in Eq. �7� occurs at opti-
mum radius �opt= ��d /Q�1/4, which yields Fmax=Q2�9�D /2�

�Q1/4�d

3/4+1�−8. The field intensity enhancement factor for
an Ag nanosphere embedded in GaN �Q=2.77, ��0

=2.344 eV� is shown in Fig. 2 as a function of the sphere
radius r for several values of distance d. The enhancement is
rather significant for small spacing �d�10 nm� between the
metal sphere and absorbing atom or molecule and diminishes
quickly when d�20 nm.

The origin of a strong dependence of F on sphere radius
in Eq. �7� lies in the importance of a radiative decay term
that is not taken account in the simple electrostatic calcula-
tions. One should also take into account the energy loss due
to absorption in the active molecules, especially since strong
absorption is what is desired. The rate of decay due to ab-
sorption is

	abs =
c

n

Na�a

Veff
� �

� + �d
�6

, �8�

where c is the speed of light in free space, �a is the absorp-
tion cross section of the molecule, and Na is the number of
molecules per sphere. We can now introduce an additional
Q-factor due to absorption as

FIG. 1. �Color online� Illustration of a metal nanosphere with a radius r
placed at the apex of a focused Gaussian beam with a numerical aperture
characterized by the far-field half angle �. In the absence of the metal
sphere, the beam will be focused onto a diffraction-limited spot with radius
w0 at the waist.

FIG. 2. Absorption enhancement factor as a function of Ag sphere radius
embedded in GaN for different values of spacing d.
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Qa =
�0

	abs�1 + 2�D�
=

�D
2

Na�a

�3

6��D
�� + �d

�
�6

. �9�

This finally brings us to

Fa =
9�D

2

1

��3 + Q−1 + Qa
−1�2� �

� + �d
�6

. �10�

The result of enhancement is shown in Fig. 3 as a function of
sphere radius r for the Ag/GaN system by fixing d=5 nm
for several values of the total absorption cross section Na�a.
It is clear that the absorption of the active molecules be-
comes important when it approaches the loss in the metal.
This can be confirmed by optimizing Eq. �10� for small
d�0. Then we find the optimum normalized metal sphere
radius �opt= �6��DNa�a /�D

2 �1/6 and Fa,opt
�9�DQ2 /2�

�2Q�6��DNa�a /�D

2 �1/2+1�−2. Thus absorption in the active
molecules themselves will become main limiting factor when
Na�a��D

2 /24��DQ2
14 nm2 for the Ag/GaN system and
would not change substantially over the most of visible and
near IR spectrum because an increase in wavelength would
be balanced by a corresponding increase in Q-factor as met-
als become less absorptive at longer wavelengths. For a rela-
tively small number of organic molecules, even with absorp-
tion cross sections as high as 0.1 nm2 in the case of
Rhodamine 6G,17 the absorption on active molecules will
play no role in determining the limit of field enhancement. At
the same time, if one considers detectors based on semicon-
ductors, specifically semiconductor quantum dots, their
cross-sections are on the scale of a few nm2,18 thus the factor
Na�a can easily approach 100 nm2 and absorption becomes
more relevant. As one can see from Fig. 3 for Na�a
�100 nm2, only a factor-of-few absorption enhancement is
attainable and even then only for relatively small distance
from the metal surface.

To better emphasize the points made in this work, we
have performed optimization of the absorption enhancement
for a wide range of total absorption cross section and spacing
between the molecules and metal spheres. The optimized re-
sults shown in Fig. 4 clearly indicate that the strongest ab-
sorption enhancement �by almost two orders of magnitude�
is attainable for the small number of weakly absorbing mol-
ecules placed close to the metal spheres, while for the large
number of strong absorbers spread out only a dozen nanom-
eters further away from the spheres the absorption enhance-
ment is far more modest if it exists at all.

In conclusion, we have developed an analytical model of
absorption enhancement in the vicinity of metal nanopar-
ticles and have shown that the degree of enhancement
strongly depends on the particle dimension, thereby provid-
ing a straightforward route to optimizing the absorption en-
hancement. The main conclusion is that metal nanoparticles
can dramatically improve the performance of optical sensors
in which the analyte molecules are few and their original
absorption is low. At the same time, when the original ab-
sorption is already significant, as is the case of most optical
detectors and photovoltaic devices, the enhancement is weak
or nonexistent due to metal loss.

This work is supported in part by the Air Force Office of
Scientific Research �FA8718-05-C-0030�.
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FIG. 4. �Color online� Absorption enhancement in the Ag/GaN system op-
timized for absorbing molecules with a total absorption cross section Na�a

placed at a distance d from the Ag sphere.
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