1,155 research outputs found

    Responsibility modelling for risk analysis

    Get PDF

    User's manual for a Fortran IV program for computing flutter boundaries of flat panel arrays in supersonic flow

    Get PDF
    Fortran IV program manual for computing flutter boundaries of flat panel arrays in supersonic flo

    Deriving Information Requirements from Responsibility Models

    Get PDF
    This paper describes research in understanding the requirements for complex information systems that are constructed from one or more generic COTS systems. We argue that, in these cases, behavioural requirements are largely defined by the underlying system and that the goal of the requirements engineering process is to understand the information requirements of system stakeholders. We discuss this notion of information requirements and propose that an understanding of how a socio-technical system is structured in terms of responsibilities is an effective way of discovering this type of requirement. We introduce the idea of responsibility modelling and show, using an example drawn from the domain of emergency planning, how a responsibility model can be used to derive information requirements for a system that coordinates the multiple agencies dealing with an emergency

    Responsibility modelling for civil emergency planning

    Get PDF
    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans

    A computer program for calculating external thermal-radiation heat loads and temperatures of spacecraft orbiting the planets or the moon

    Get PDF
    Computer program for computation of thermal radiation heat loads and temperatures of spacecraft orbiting planets or moo

    Realizability of the Lorentzian (n,1)-Simplex

    Full text link
    In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have developed a Lorentzian version of the Quantum Regge Calculus in which the significant differences between simplices in Lorentzian signature and Euclidean signature are crucial. In this article we extend a central result used in the previous article, regarding the realizability of Lorentzian triangles, to arbitrary dimension. This technical step will be crucial for developing the Lorentzian model in the case of most physical interest: 3+1 dimensions. We first state (and derive in an appendix) the realizability conditions on the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is the number of space-like dimensions. We then show that in any dimension there is a certain type of simplex which has all of its time-like edge lengths completely unconstrained by any sort of triangle inequality. This result is the d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to Introduction and Discussion sections. 1 reference updated. This version accepted for publication in JHEP. V3: minor updates and clarifications, this version closely corresponds to the version published in JHE

    Effects of concurrent intravenous morphine sulfate and naltrexone hydrochloride on end-tidal carbon dioxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory depression, a potentially fatal side-effect of opioid-overdose, may be reversed by timely administration of an opioid antagonist, such as naloxone or naltrexone. Tampering with a formulation of morphine sulfate and sequestered naltrexone hydrochloride extended release capsules (MS-sNT) releases both the opioid morphine and the antagonist naltrexone. A study in recreational opioid-users indicated that morphine and naltrexone injected in the 25:1 ratio (duplicating the ratio of the formulation) found MS-sNT reduced morphine-induced euphoric effects vs intravenous (IV) morphine alone. In the same study, the effects of morphine + naltrexone on end-tidal carbon dioxide (EtCO<sub>2</sub>), a measure of respiratory-depression, were evaluated and these data are reported here.</p> <p>Methods</p> <p>Single-center, placebo-controlled, double-blind crossover study. Non-dependent male opioid users were randomized to receive single IV doses of placebo, 30 mg morphine alone, and 30 mg morphine + 1.2 mg naltrexone. EtCO<sub>2 </sub>was measured by noninvasive capnography.</p> <p>Results</p> <p>Significant differences in EtCO<sub>2 </sub>least-squares means across all treatments for maximal effect (E<sub>max</sub>) and area under the effect curve (AUE<sub>0-2</sub>, AUE<sub>0-8</sub>, AUE<sub>0-24</sub>) were detected (all p ≤ 0.0011). EtCO<sub>2 </sub>E<sub>max </sub>values for morphine + naltrexone were significantly reduced vs morphine alone (42.9 mm Hg vs 47.1 mm Hg, p < 0.0001) and were not significantly different vs placebo (41.9 mm Hg). Median time to reach maximal effect (TE<sub>max</sub>) was delayed for morphine + naltrexone vs morphine alone (5.0 h vs 1.0 h).</p> <p>Conclusions</p> <p>Results provide preliminary evidence that the naltrexone:morphine ratio within MS-sNT is sufficient to significantly reduce EtCO<sub>2 </sub>when administered intravenously to non-dependent male recreational opioid-users. Further studies with multiple measures of respiratory-function are warranted to determine if risk of respiratory depression is also reduced by naltrexone in the tampered formulation.</p

    Black holes and a scalar field in an expanding universe

    Full text link
    We consider a model of an inhomogeneous universe including a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without including scalar field to show that an averaged scale factor coincides with that of the Friedmann model. In this work we construct the inhomogeneous universe with an massless scalar field, where we assume that the averaged scale factor and scalar field are given by those of the Friedmann model including a scalar field. All of our calculations are carried out in the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to ADM mass if the mass evolves adiabatically, and obtain an equation relating our mass to the averaged scalar field and scale factor. As the results we find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe, and that the time dependence is qualitatively diffenrent according to the sign of the curvature of the universe: the mass increases decelerating in the closed universe case, is constant in the flat case and decreases decelerating in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravitiy with a scalar field potential. Furthermore, we discuss the relation of our results to the uniqueness theorem of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure
    corecore