USER'S MANUAL FOR A FORTRAN IV PROGRAM FOR COMPUTING FLUTTER BOUNDARIES OF FLAT PANEL ARRAYS IN SUPERSONIC FLOW

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Contract No. NAS1-4900 8 July 1966

MRI Project No. 2852-P

National Aeronautics and Space Administration Langley Research Center Langley Station
Hampton, Virginia 23365

USER'S MANUAL FOR A FORTRAN IV PROGRAM FOR CCMPUTING FLUTTER BOUNDARIES OF FLAT PANEL ARRAYS IN SUPERSONIC FLOW

by
D. R. Kobett
D. I. Sommerville

Contract No. NASl-4900 8 July 1966

MRI Project No. 2852-P

For

National Aeronautics and Space Administration
Langley Research Center
Langley Station
Hampton, Virginia 23365

PREFACE

This manual was prepared by Midwest Research Institute under Contract No. NASl-4900, "Research Relating to the Flutter of Flat Panels in a Supersonic Air Stream," for the Langley Research Center of the National Aeronautics and Space Administration.

Approved for:

MIDWEST RESEARCH INSTITUTE

Sheldon L. Levy, Director Mathematics and Physics Division

8 July 1966

ABSTRACT

The computer program is a by-product of research efforts that have produced NASA TN D-2227, CR-80, CR-538, and AFOSR TN 1952. The report material is arranged for two distinct types of readers, namely, the engineer who wishes to use the program as is, and the programmer who may be required to modify the program for a specific application.

Page No.

I. Introduction 1
II. Background Information for the Frogram User 2
A. Analytical Model 2
B. Farametric Options Available to the Program User 4
III. General Program Description 6
IV. Computation Frocedure 8
V. Input Preparation 10
VI. Interpretation of Output 16
VII. Program Organization 19
VIII. Submitting a Computer Kun 23
Appendix I - Figures 1-6 25
Appendix II - Description of Scaling Routines 34
Appendix III - Intermediate Tape Format 36
Appendix IV - Explanation of Exceptional Common Statements 39
Appendix V - List of Common and Argument List Quantities Altered by Various Subprograms 41
Appendix VI - Table of Program Symbols 43
Appendix VII - Characteristic Equation Routine 46
Appendix VIII - Admissible Values for the Torsional Restraint Proportionality Factor ϵ_{y} 49
Appendix IX - Description of a Program Check and the Precision Factor TESTR 51
Appendix X - Flow Diagrams 54
Appendix XI - Program Listings 65
Bibliography 91
List of Figures
Fig. No. Title Fage No.
1 Typical Finite Fanel Array 26
2a Sample Input Data Set 1 27
2b Sample Input Data Set 2 28
3 Input Data Listing for Sample Output Case (Fig. 5) 28.1
4 Data Format for User Reference 29
5 Sample Output Listing 30
6a Hierarchy of Subroutines 32
6b Hierarchy of Subroutines (Concluded) 33

I. INTRODUCTION

The computer program described in this report is a by-product of panel flutter research efforts conducted under NASA and AFOSR sponsorship. It was developed to facilitate the calculation of flutter characteristics for multi-bay, flat panel arrays exposed on one side to a uniform supersonic airstream. The program is written in FORTRAN IV for running on the IBM 7094 under IBSYS.

The computation technique employed is straightforward in the sense that a computer-run directly obtains, as output, points on the boundary separating stable from unstable regions in a generalized flutter-parameter-plane. (More conventional techniques require cross-plotting or machine interpolation under manual direction to obtain the "flutter points".) Although the program presented here is tailored to the case of a flat panel array, the technique can be conveniently adapted to related applications, for example, the flutter of a cylindrical shell or a wing-body configuration.

The report material is arranged for two distinct types of reader, namely, the engineer who wishes to use the program as is, and the programmer who may be required to modify the program for a specific application. The engineer will want to become familiar with the first six sections through the interpretation of output; the programmer with the main body of the report and those appendices that apply to the intended modification.

The computer program is based on the analytical model developed in [1].* A brief summary description of the model is given in Section II of this report; the reader interested in detail is referred to [I].

[^0]
II. BACKGROUND INFORMATION FOR THE FROGRAM USER

This section is divided into two parts, viz., a description of the analytical model employed and a discussion of the parametric options available to the program user.

A. Analytical Model

The computer program is based on the analysis described in [1], the salient features of which are summarized below.

Four different types of panel array configurations can be analyzed. Each configuration has an arbitrary number of chordwise bays; the distinction between configurations is associated with spanwise features. The first, and most general, array is one with finite span and arbitrary number of spanwise bays typified by Fig. 1.* The second configuration is one in which the array span is divided into equal width bays extending to infinity. The third configuration is an array with one spanwise bay whose side edges are free to deflect. The final configuration consists of the third array above, flanked at a distance by vertical surfaces representing wind tunnel walls.

All configurations have certain features in common. The upper surface of the panels is exposed to a uniform supersonic flow and the lower surface to a constant pressure equal to the static pressure in the undisturbed freestream. Acoustic effects on the lower surface and membrane stresses due to static pressure differential across the panel are not included.

To clarify the differences in the analyses of the different configurations, the case typified by Fig. 1 will first be discussed in some detail. Then those aspects peculiar to the other configurations will be pointed out.

The array is composed of geometrically identical panels; it has L chordwise and N spanwise bays, and is bordered by an inflexible surface. A nondimensional equation of motion for the vertical displacement of the panel surface is obtained using small deflection plate theory and exact, linearized, three-dimensional, potential aerodynamic theory. In formulating boundary and compatibility conditions the array is assumed to be supported at its perimeter and along the interior lines delineating the individual panels by a structure that does not deflect perpendicular to the plane of the array, but that does

[^1]supply torsional restraint. At the leading and trailing edges the moment imposed by the supporting structure is equal to a proportionality factor, $\epsilon_{\mathbf{x}}$, multiplying the local panel slope. At the interior, spanwise directed members, the imposed moment is proportional to $2 \varepsilon_{x}$ times the local panel slope; i.e., the interior members are twice as stiff, torsionally, as the ones at the perimeter.

The above torsional properties hold also for the chordwise directed supporting members, with the exception that the proportionality constant, ϵ_{y}, can be different from ϵ_{x}. The slope across the interior panel boundaries is assumed to be continuous.

The equation of motion is in essence a self-excited forced vibration equation where the aerodynamic pressure induced by the panel displacement is the forcing function. It is assumed that conditions for which the equation has harmonic solutions are conditions of neutral stability; this criterion is used in calculating the flutter boundaries for the panel array.

Harmonic solutions are obtained using a Galerkin approach. The chordwise variation of the panel displacement is approximated by a finite summation of natural vibration modes of a beam with L bays and boundary conditions the same as on the spanwise directed panel edges. The spanwise variation is approximated by one natural vibration mode* of a beam with N bays and boundary conditions the same as on the chordwise directed panel edges. Application of the Galerkin procedure requires integration of the aerodynamic pressure over the panel surface. This integration is performed by expanding the spanwise deflection shape in a sine series; then numerically integrating term by term using the unsteady pressure solution derived in $[2]$ for sinusoidal spanwise and arbitrary chordwise deflection shape.

The above procedure leads to a set of simultaneous, complex, algebraic equations (see [I], Eq. (39)) for the amplitude and phasing of the approximating modes. An effect of structural damping is introduced by multiplying the stiffness matrix by the complex damping factor ($1+j g$) Solutions to the equations for real values of the basic parameters $1 / \mu$ and $z^{1 / 3}$

[^2]are obtained by the procedure described in Section III*. The preceding is a brief description of analytical details for the panel array typified by Fig. 1. The analysis for the other three configurations are similar to that described above, with the exceptions noted in the following paragraph.

For the array which extends to infinity in the spanwise direction (second configuration) the mode approximating the spanwise deflection is automatically taken to be the lowest frequency natural vibration mode of a beam with an infinite number of bays. For the array with free side edges (third configuration) the panels are assumed to deflect two-dimensionally, i.e., with no spanwise variation in the deflection shape. The two-dimensionality assumption is incorporated by using the sine series expansion for a rectangular half wave. The fourth configuration, the one with simulated wind tunnel walls, is also handled simply by introducing an appropriate expansion. In this case, the expansion is one which simulates the effect of fictitious image panels, thereby obtaining no cross flow at the walls. Mach wave reflections from the walls are intrinsically included by this technique.

B. Parametric Options Available to the Program User

Within the framework of the four geometrical configurations described earlier, there are options available for what will be called analytical and physical parameters. The analytical parameters are:

1. Number of modes in the approximation of the chordwise deflection shape.
2. Mode numbers of the chordwise approximating terms.
3. Number of terms in the sine series expansion of the spanwise approximating mode.
4. Mode number of the spanwise approximating term (first configuration only).
$\bar{*} \frac{1}{\mu}=$ mass ratio parameter $=\frac{\rho_{0}}{\rho_{s} h}$
$z^{1 / 3}=$ a parameter involving dynamic pressure and bending stiffness

$$
=\frac{h}{a}\left[\frac{E}{q\left(1-v^{2}\right)}\right]^{1 / 3}
$$

where
$\rho=$ free stream density
$\rho_{s}=$ panel material density
$\mathbf{a}=$ panel chord
$h=$ panel thickness
$E=$ modulus of elasticity
$\mathrm{q}=$ freestream dynamic pressure
$v=$ Poisson's ratio

The physical parameters are:

1. Mach number
2. Aspect ratio
3. Torsional restraint proportionality factors $\varepsilon_{\mathbf{x}}$ and $\epsilon_{\mathbf{y}}$
4. Number of chordwise panels
5. Number of spanwise panels (first configuration only)
6. Distance from panel edge to wind tunnel wall (fourth configuration only)
7. Structural damping coefficient.

Permissible ranges for the anaiytical parameters are defined in the following paragraphs.

The number of modes used to approximate the chordwise deflection shape must be at least 2 and at most 10. The lower limit is set by the analytical techniques employed and the upper limit by dimensioned array sizes in the program. Numerical considerations are expected to reduce the permissible upper limit to less than 10. With an earlier version of the program, numerical inaccuracy was encountered in increasing from 4 to 6 modes. The present, improved, version has been used extensively for up to 6 mode analyses [3]; it has not been applied to analyses requiring the use of more than 6 modes. The modes may be any combination of the first 30 natural vibration modes of a beam with the appropriate number of bays.

Up to 20 nonzero terms may be used in the sine series expansion of the approximating spanwise mode. Since the expansion always has zero alternate terms (odd or even numbered depending on mode number and number of spanwise bays), the above condition actually corresponds to a 40 term series expansion.

The spanwise approximating mode (first geometrical configuration only) may be any one of the first 30 natural vibration modes of a beam with N bays, N being the number of spanwise bays in the panel array. The above is a mechanical bound set by the program; practically, the mode number must be selected in cognizance of the number of spanwise bays, N, the spanwise mode number, and the 40 term bound on the sine series expansion.

This completes the definition of permissible ranges for the analytical parameters. Ranges for the physical parameters are discussed in the succeeding paragraphs.

Mach number must be confined to the supersonic regime (i.e., > l) for compatibility with the analytical model.

The computer program imposes no restriction on aspect ratio. However, a practical bound (a judgment of the user) is imposed by the permissible number of modes in the approximation of the chordwise deflection shape.

The nondimensional torsional restraint proportionality factors ε_{x} and ϵ_{y} can be independently varied from zero to any maximum desired*. On a practical basis, however, $\epsilon=0$ corresponds to pinned edge conditions and $\epsilon=1,000$ has been found to very closely approximate the clamped edge case (a judgment made on the bases of both modal frequencies and computed flutter boundaries). Further, it has been observed that flutter boundaries computed using $\epsilon=100$ and $\epsilon=1,000$ are nearly identical, while $\epsilon=10$ yields results approximately midway between the pinned and clamped edge cases.

Panel arrays with up to 4 chordwise bays can be analyzed. Again, however, a practical bound must be recognized, associated with the permissible number of modes in the approximation of the chordwise deflection shape.

Up to 6 spanwise bays can be used in analyses of finite span arrays (first geometrical configuration). As noted earlier, however, the number must be selected in cognizance of the spanwise mode number and the 40 term bound on the sine series expansion of the spanwise deflection shape.

For the fourth geometrical configuration, the distance from the panel side edges to the wind tunnel wall must be greater than zero to be compatible with the theory. Practically, it should be equal to or greater than about 10 per cent of the panel span in order to obtain a satisfactory sine series expansion of the spanwise deflection shape.

Finally, there is no program restriction on values for the structural damping coefficient.

This completes the overall description of parametric options available to the program user. Related recommendations for optimum program usage are provided in Section IV.

III. GENERAL PROGRAM DESCRIPTION

The method used to find flutter points is essentially that described on pages $15-17$ of [1]. A few slight modifications are used, however, in the interest of saving either computer running time or storage.

[^3]The program makes use of a magnetic tape to store a number of arrays which depend only on the number of spanwise and chordwise bays, the corresponding mode numbers allowed and the parameters $\epsilon_{\mathbf{x}}$ and $\epsilon_{\mathbf{y}}$ describing edge conditions. If such a tape has not already been generated it can be generated as the first step of any flutter run. If it has been generated on a previous run it may be mounted as an input tape. Since the program may take around 12 min. to produce a tape when 3 chordwise bays are needed, it is advisable to save the tape if it might be used again. Details of the tape format are given in Appendix III.

Because of the size of the program it is necessary to use the overlay feature of the loader during execution. The first overlay generates the tape described in the preceding paragraph, if necessary. The second overlay reads data until a flutter problem has been defined, reads data from the tape generated previously for the specified number of chordwise bays, prints out heading information describing the problem and generates matrices which can be used by a more or less general subroutine, EUCLID, to compute flutter points and vectors. Subroutine EUCLID is loaded as the third overlay.

The flutter matrix used by the program is equivalent to but slightly different from that shown in $[1]$. Let $E=\left\{E_{\bar{m}, m}\right\}, J=\left\{J_{\bar{m}, m}\right\}$ and $C=\left\{C_{\bar{m}, m}\right\}$ to simplify notation. Then since Eq. 39 of Ref. [1] can be premultiplied by any nonsingular matrix, we can premultiply by $\beta(1-j g) \mathrm{E}^{-1}$, for E is nonsingular and β is not zero for Nach number greater than 1. The new form of Eq. 40 then becomes

$$
\operatorname{Det}\left\{\frac{2 B\left(1+g^{2}\right) I}{24}-\mu \beta \mathrm{K}^{2}(1-j g) E^{-1} J+(1-j g) E^{-1} C\right\}=0
$$

where I is the identity matrix. The argument list for subroutine EUCLID includes $g,-\beta_{k}{ }^{2}, 12 /\left(\beta\left(1+g^{2}\right)\right)$, and a table of μ-values in addition to the matrices $E-I J$ and $E-I_{C}$. If we let λ denote $\frac{Z \beta\left(1+g^{2}\right)}{24}$ and $\bar{C}(\mu)$ be the matrix $\mu 3 \mathrm{k}^{2}(1-j g) \mathrm{E}^{-1} \mathrm{~J}-(1-j g) \mathrm{E}^{-1 \mathrm{C}}$, the problem to be solved is that of finding real parameters λ and μ such that $|\lambda I-\bar{C}(\mu)|=0$.

If μ is assigned a numerical value, then $|\lambda I-\bar{C}(\mu)|$ is the characteristic equation of the complex matrix $\bar{C}(\mu)$. The condition that the determinant vanish requires that real and imaginary parts of the characteristic equation have a common root. This occurs if and only if the Sylvester resultant [4] between the real and imaginary parts of the characteristic equation vanishes. Thus if for two distinct values of μ, the corresponding Sylvester resultants have opposite signs, there is a μ value between the original two for which the resultant vanishes.

Subroutine EUCLID first tabulates the Sylvester resultant corresponding to each value in the μ - table.* A search is then made for sign changes of the resultant as μ varies. When a sign change is detected, the program interpolates until the flutter value of μ is found to the required degree of accuracy. Then the corresponding value of λ and the flutter vector are found. The results are converted to the parameters of interest, namely $z^{l / 3}$ and l / μ and printed. The program then repeats the steps above until all sign changes in the resultant table have been processed, whereupon the second overlay is called again to read data for the next problem.

IV. COMPUTATION PRCCEDURE

The purpose of a typical application of the computer program is to calculate stability boundaries for a particular geometrical configuration, and fixed values of Mach number, aspect ratio, torsional edge restraint, spanwise mode number (where applicable), and structural damping coefficient. The stability boundaries are obtained via a series of calculations as described below.**

In a discrete calculation, values are assigned to the analytical and physical parameters, a reduced frequency is specified, a table of μ values defined, and the program then computes the flutter points lying within the range of μ defined by the table.*** (For clarity of ensuing discussions a computation case is here defined as a series of discrete calculations for a selected set of reduced frequencies and damping coefficients.) Every computation case yields a number of points on the stability boundaries, each point being characterized by a particular frequency and flutter vector. Distinct stability boundaries are obtained by constructing continuous curves through the computed points, using continuity of reduced frequency and flutter vector as associative criteria.

[^4]The input μ table may be tailored to restrict the range through which the program searches for flutter points. In some instances, this tactic can be profitably employed to reduce computation time. In general, however, a range in $1 / \mu$ from $\sigma .01$ to 0.20 is of practical interest and the μ table in Fig. 2 has therefore been used extensively in application of the computer program.

It has also been found economical to limit each computation case to between 5 and 10 reduced frequencies, and more or less construct the boundaries step by step.

Computation time can be reduced through judicious use of the intermediate data tape. The data arrays stored on the tape depend on

> Number of spanwise bays $-N$ Spanwise mode number - NGBAR Torsional edge restraints $-\epsilon_{\mathrm{x}}$ and ϵ_{y} Number of chordwise bays* -L .

The tape also contains data for 10 chordwise modes which may be any 10 of the first 30 natural vibration modes of a beam with L bays (see Section V on Input Preparation). The data tape, on the other hand, is independent of Mach number, aspect ratio and structural damping coefficient.

Since an appreciable amount of time is required to generate the data arrays stored on the tape (particularly for $L>1$) it is advisable to reserve the tape for use as an auxiliary input tape in subsequent runs. This is true whether or not Mach number, aspect ratio and structural damping are varied. To emphasize the above point it may be noted that the results reported in [3] were obtained using a tape generated in the first computer run, whereas a total of approximately 15 runs were made in all.

Some final comments are required concerning the case where a computed flutter point(s) is incorrect (indicated by program checks included in the printed output). If this occurs the input data should be double checked first, because improper input can cause erroneous results. (For example, the mode numbers may not be in ascending order.) If the data are correct the specified error bound on μ (TESTR; see Appendix IX) may be too large. Experience with the program has indicated that a value of TESTR equal 10^{-7} is adequate in general for analyses using up to 6 chordwise modes, but numerical peculiarities could occasionally require an even smaller error bound.

[^5]Another possible cause of erroneous results is the use of too many chordwise modes in the analysis. As previously noted, with an earlier version of the program numerical inaccuracy was encountered when the number of modes was increased from 4 to 6. Improvement of one of the program routines (FIUT) eliminated this difficulty but it is possible that the use of more than 6 modes may similarly overtax a critical routine.

V. INPUT PREPARATION

A data deck may contain data sets for one or more computation cases, the only restriction being that the cases must all require the same intermediate data tape*, which may be available from a previous run or generated as part of the first case of the current run.

The first card of a data deck refers to the intermediate tape. If the tape is available from a previous run the first card is blank; if the tape is to be generated in the current run the first card is as follows.

Cols.	Format	Symbol	Description
1-2	I2	IMIN	(see LMAX)
3-4	I2	IMAX	Data arrays will be generated and stored for values of L from IMIN to IMAX inclusive (IMIN \leq IMAX).
5-24	1012	MODE (I)	Array of 10 chordwise mode numbers between 1 and 30 in ascending order. Data arrays will be generated and stored for the 10 modes specified.**
25-26	I2	NSP	Number of spanwise bays.
27-28	I2	NGBAR	Spanwise mode number.
29-38	F10.0	EPY	Torsional restraint proportionality factor for spanwise directed panel edges (ε_{x} in Section II and [1]).

[^6]Cols. Format Symbol Description
39-48 F10.0 EFX

Torsional restraint proportionality factor for chordwise directed panel edges (ϵ_{y} in Section II and [1]). This item is irrelevant for options 4 and 5 (see option identification in later description of number 11 data card).

Data for the first case follow the intermediate tape card. This first data set must contain all of the cards described below (and illustrated in Fig. 4 which is provided for user reference) plus a blank terminating card. Subsequent data sets need only include the cards containing input information to be redefined for the new case. Each data set following the first is terminated by a blank card.

The individual data cards each have an identification number (between 1 and 12) in columns 1 and 2. This number is used for reference in the following description of input data details.*

Ol Card

Cols.	Format	Symbol	
1-2	I2	-	Description
I1-20	E10.5	TESTR	Upper bound on acceptable decimal per cent error in computed μ (Appendix IX).

02 Card

Cols.	Format	Symbol	Description
1-2	I2	-	Identification number (02 on this card).
$11-20$	E10.5	S	Reciprocal of aspect ratio.
Cols.	Format	Symbol	
Con	I2	-	Identification number (03 on this card).

[^7]03 Card (Concluded)

Cols.	Format	Symbol	Description
3-4	I2	mand	Number of chordwise modes.
5-6	I2	-	If zero, consecutive modes starting with the first are used; if not zero see next item.
61-80	10 I 2	MODE (I)	This field is blank if columns 5-6 contain zero. If columns 5-6 are not zero, this field contains the mode numbers to be used in the analysis, in ascending order. (The modes listed must be ones that are included on the intermediate tape.)

04 Card

Cols.	Format	Symbol	
$1-2$	I2	-	Identification number (O4 on this card).
$11-20$	E10.5	EMSQ	Mach number squared.

05 Card

Cols
1-
3-4 I2

11-60 5E10.5 GT(I) Damping coefficients.

06 Card

```
06 Card (Concluded)
```

Cols. Format Symbol Description
3-4 I2 L Number of chordwise bays in panel array. (The number specified must be one of those included on the intermediate tape.)

11-20 El0.5 SAVE(1) Blank or zero causes the inverse of the elastic matrix times the inertia and aerodynamic matrices to be printed. A nonzero value suppresses the printing.
07 Card

A series of 07 cards are used to read in the μ table. The table must contain a minimum of 2 and a maximum of 50 values arranged in monotonic order. Details of a typical 07 card are as follows.

Cols.	Format	Symbol	
1-2	I2	-	Description
$3-4$	I2	-	Identification number (07 on this card).
$5-6$	I2	-	Index of last μ on this card.
$11-60$	5E10.5	ALPHA(I)	Values of μ (up to five values).

08 Card

Cols. Format	Symbol	Description $1-2$	I2
$3-4$	I2	MAXAL	Tdentification number (08 on this card).
3umber of values in the μ table.			

09 Card
A series of 09 cards are used to read in the reduced frequencies to be processed. A maximum of 30 frequencies can be read, in any desired order. Details of a typical 09 card are as follows.

Cols.	Format	Symbol	Description
$1-2$	I2	-	Identification number (09 on this card).

09 Card (Concluded)

Cols. Format	Symbol	Description $3-4$	I2
$5-6$	I2	-	Index of first frequency on this card.
$11-60$	$5 E 10.5$	CKAY(I) Frequencies (up to five values).	

10 Card

| Cols. Format | Symbol | Description
 1-2 I2 | - |
| :---: | :---: | :---: | :---: |\quad| Identification number (10 on this card). |
| :---: |
| $3-4$ |

11 Card

This card identifies which of the 4 geometrical configurations described in Section II is to be analyzed. An option number is used for this purpose. The correlation between option number and geometrical configuration is as follows.

Option 1 - The finite array typified by Fig. 1.

Option 2 - The array with infinite span divided into equal width bays.

Option 4 - The array with one spanwise bay and free side edges.

Option 5 - The option 4 array flanked by vertical surfaces representing wind tunnel walls.

The omission of 3 in the option sequence results from the fact that a fifth geometrical configuration included in the analysis [1] has not been programmed. Details of the 11 card are as follows.

Cols. Format	Symbol		Description 1-2 I2
$3-4$	I2	-	Identification number (11 on this card).
NCASE	Option number.		

11 Card (Concluded)
Cols. Format Symbol

Description

Distance from panel edge to wind tunnel wall, measured in panel spans. (Relevant to Option 5 only.)

12 Card

Cols.	Format	Symbol	Description
1-2	I2	-	Identification number (12 on this card).
3-4	I2	NNN	Number of nonzero terms in sine series expansion of spanwise deflection shape (maximum of 20). For Option 2 and $\varepsilon_{y}=0$ this number must be 1 .
listi data 1 te tap ite a	s compl are gi ed in F generat y with	the de in Figs 2a caus in the ordwise	iption of data card details. Sample data and 3 to complement the above description. two cases to be executed, both using an interent run. The first case is an analysis of ys and 1 spanwise bay, and with

```
Mach number \(=1.35\)
Aspect ratio \(=4\)
Damping coefficient \(=0.01\)
\(\epsilon_{x}=\epsilon_{y}=0\)
Spanwise mode number = 1 .
```

The analysis uses the first 4 chordwise modes, 20 nonzero terms in the sine series expansion, and 2 frequencies, 1.0 and 1.5 are processed.

The second case is an analysis of an Option 2 array with 3 chordwise bays and with

$$
\begin{aligned}
& \text { Mach number }=1.2 \\
& \text { Aspect ratio }=2 \\
& \text { Damping coefficient }=0.015 \\
& \epsilon_{x}=\epsilon_{y}=0 .
\end{aligned}
$$

The analysis uses chordwise modes 1, 4, 7, and 9, and 2 frequencies, 0.7 and 0.8 are processed.

The data listed in Fig. Zb also cause two cases to be executed, both using an intermediate tape generated in a previous run (assumed to be the run of Fig. 2a). The first case is an analysis of an Option 5 array with 1 chordwise bay and with

$$
\begin{aligned}
& \text { Mach number }=1.3 \\
& \text { Aspect ratio }=1 \\
& \text { Damping coefficient }=0 \\
& \epsilon_{y}=0
\end{aligned}
$$

The analysis uses the first 4 chordwise modes, and 15 nonzero terms in the sine series expansion. The distance from the panel edge to the wind tunnel wall is one-quarter of the panel span. Three frequencies, 1.0, 1.2 and 1.4, are processed. The second case is identical with the first except Mach number is changed to l.2.

The data listed in Fig. 3 will cause the sample output of Fig. 5 to be generated.

VI. INTERPRETATION OF OUTPUT

The output listing from a typical computer run illustrated in Fig. 5 is the implied reference for this section.

The output listing includes several checks on the validity of computed results and it is therefore pertinent to begin this discussion with the following brief reiteration of the overall computational technique employed. The purpose of a computer run is to calculate real-valued pairs of the parameters μ and Z which satisfy Eq. (40) of [1], that is, values for which the flutter determinant vanishes. The technique employed is not one of direct iteration of the complex flutter determinant. Instead, the Sylvester determinant composed of the coefficients of the real and imaginary characteristic polynomials of the flutter matrix, is tabulated with respect to the parameter μ *. The μ for which the Sylvester determinant vanishes, together with the corresponding Z obtained by operating on the characteristic polynomials, comprise a real-valued $\mu-Z$ pair for which the flutter determinant vanishes. These pairs are listed in the output in the converted form $1 / \mu$ and $z^{1 / 3}$ together with the flutter vector, program checks and associated identifying information.

[^8]Referring now to Fig. 5 the first line of output is a self-explanatory identification heading. The next block of output is a summarization of input parameters as follows:

M	Mach number
S	- Reciprocal of aspect ratio
E (SPAN)	- Torsional restraint proportionality factor for spanwise directed edges (ϵ_{x})
E (CHORD)	- Torsional restraint proportionality factor for chordwise directed edges (ϵ_{y})
TESTR	- A precision factor imposed on the iteration of the Sylvester determinant (Appendix IX)
I	- Number of chordwise bays
MMAX	- Number of chordwise modes used in the analysis
N	- Number of spanwise bays (relevant only to Option 1 configuration)
UMAX	- Number of nonzero terms in the sine series expansion of the spanwise deflection shape
SPANWISE MODE	- Number of the spanwise approximating mode
CASE	- Geometrical configuration option number
A/2	- Distance, in panel spans, from panel edge to wind tunnel wall (relevant only to Option 5)
1/DPHI	- Number of equal increments (per bay) used in the chordwise numerical integration of the aerodynamic pressure (fixed at 16 in the program)
K	- Reduced frequency
G	- Structural damping coefficient

The next block of output contains intermediate computed results as follows:

The input μ table is printed next, with the corresponding computed values of the Sylvester determinant. RES denotes the value of the determinant. SFA and SFR are scale factors on RES (see Appendix II). Sign changes in RES indicate the presence of a flutter point.

The preceding output constitutes general information; the remainder of the output is composed of blocks of computed flutter data, repeated for each flutter point that is found. The first item is the number of iterative interpolations of the Sylvester determinant required to obtain the flutter μ. Following this is a three-rowed tabulation containing the computed flutter point in the first row and the first of the program checks in the second and third rows. In the first row, $z^{1 / 3}$ and $1 / \mu$ are the computed flutter point pair, IAMDA is the negative of the common root of the characteristic polynomials at flutter, and RES (together with SFA and SFR) is the value of the Sylvester determinant for the flutter μ. The next two rows contain the same data as above except the μ^{\prime} 's are the last two bracketing μ^{\prime} 's in the iterative interpolation of the Sylvester determinant.* The test criterion is that RES in the second and third rows should be of opposite sign.

The next item printed is the flutter vector in polar form, normalized on the maximum component. R denotes the moduli and THETA the relative phase angles in radians. The vector elements are listed in order of ascending mode number.

The tabulation labelled COMPIEX RESIDUALS is a second program check, obtained by premultiplying the flutter vector by the flutter matrix. The test criterion here is that the "COMPLEX RESIDUALS" vector elements should uniformly be small (ideally zero).

The print-out labelled CHARACTERISTIC EQUATION AT FLUTTER are the coefficients of the real and imaginary characteristic polynomials at flutter. The coefficients of the real polynomial are listed first, beginning with the constant term and progressing toward the higher order terms. The real polynomial is of order MMAX and the leading coefficient is always unity. The imaginary polynomial, printed next, is of order MMAX-1.

The next line of output (containing $P, Q, P / P I A$ and $Q / Q 1 A$) is a numerical precision check of the computed flutter point, based on the criterion that the real and imaginary characteristic polynomials must have a common root at flutter. The theoretical basis for this check is described in Appendix IX.

[^9]The last output block (three lines) is a check to verify that the flutter determinant changes sign in the neighborhood of the computed flutter point. The first line contains the flutter IAMDA and the corresponding value of the complex flutter determinant (real part printed first). The next two lines contain, respectively, 1.02λ and 0.98λ with the corresponding values of the flutter determinant. The test criteria are that the determinant must be of opposite sign in the last two lines, and the absolute value of the determinant in the first line should be less than that in the other two lines.

This completes the description of general output and specific output for a computed flutter point. In the general case, more than one flutter point will be obtained for a given reduced frequency, and there will be a corresponding number of output blocks containing the specific information just described. The output illustrated in Fig. 5, for example, contains three flutter points.

VII. PROGRAM ORGANIZATION

The main program (Deck name GHFLUT) is a dummy program used to control program overlay. It calls two subroutines, GHDUMP and CONTRL. The subprograms called by these two routines are shown in Fig. 6a and b.

Subroutine GHDUMP will generate a tape containing a number of arrays depending only on the elastic constraint properties and the number of bays in spanwise and chordwise directions and the corresponding mode shapes to be used in the analysis. There is no direct (in core) transfer of data from this routine to CONTRL; all information is transferred via the intermediate data tape.

Subroutine CONTRL is the control program for the major part of the flutter calculation. It reads input data describing the cases to be run, computes matrices and other parameters that are needed and calls subroutine EUCLID to find the actual flutter points.

Subroutine EUCLID is a specialization of a general purpose routine for finding pairs of real parameters for which a complex matrix vanishes. A slightly different version of the subroutine has been used to determine stability boundaries in a wing-body flutter analysis [5]. Subroutines CBAR, WROUT and VECNRM are written especially for the present panel flutter analysis. The other subroutines called by EUCLID are general purpose and would likely be suitable for use in other types of flutter calculations. The program still contains some of the control parameters which served to differentiate between the two flutter applications, although for all practical purposes these parameters are constants.

Another vestige of a previous application of the program is seen in the symbols used for μ, i.e., ALPHA, ALP, ALS, AP, AN, AL and for λ (formerly α) i.e., U, UN, UP. This, perhaps confusing, interchange should be noted carefully by the programmer.

In an earlier program version the role of the parameters μ, λ were given to α and μ. The present version is to be preferred, however, in spite of an additional matrix inversion required, because it is much easier for the user to choose a suitable range of tabulated μ values than of the old α values.

A list of all routines and a brief description of the purpose of each is given below.

GHFLUT is the main routine. It is a dumm routine used to control program overlay.

GHDUMP reads the mode numbers, number of spanwise bays, $\varepsilon_{x}, \epsilon_{y}$ and the range of values of L, the number of chordwise bays. For each L in the range, information is written on logical tape 9. This information is needed by subroutine CONIRL to set up flutter equations.

FREQEQ finds frequencies and generalized coordinates of the chordwise or spanwise modes.

CDFIND transfers the frequencies of modes requested into an array to be written on tape and finds the quantities $C_{m, l}$ and $D_{m, l}$. For chordwise modes it also generates the matrices $J_{\bar{m}, m}, K_{\bar{m}, m}$ and $\mathcal{R}_{\bar{m}, m}$

GMML finds $G_{\bar{m}, m, C}(\varphi)$. (See [1], page 52.)
HMNL finds $H_{\bar{m}, m, \ell}(\varphi)$. (See [1], page 53.)
CONTRL is effectually the main program. It has been made into a subroutine to facilitate program overlay. It calls INK to read one set of data. If necessary GPLUSH is called to read required data from logical tape 9. When the mode numbers required are not taken in sequence from the array on tape 9 , the matrices read from tape are compressed to delete undesired modes. The routine then calls BFQST and computes $E^{-1} J$ and $E^{-1} R$. Then for each entry in the table of reduced frequencies (k) the matrices AER and AEI are computed, a value of structural damping (g) is chosen from the table and subroutine EUCLID is called to calculate flutter points. After the return from EUCLID, INK is called and the cycle is repeated.

INK reads input cards for the problems being run. Since problems subsequent to the first may be specified by reading only those parameters which change, control parameters are set in this routine which suppress parts of the computation which would be unnecessarily repetitious.

GPLUSH reads from logical tape 9 values for mode numbers, number of spanwise bays, ϵ_{x} and ϵ_{y}. Also read are mode frequencies and several matrices which depend on the number of chordwise bays specified.

BFQST calculates the quantities Q, S and T and the array $B_{n, u} F(u)$ for various values of u. (See [1], Appendices D and E.)

UMKEHR inverts a real matrix.
FINDP calculates $P_{u}(5)$. (See [1], page 46.)
FINDI computes the arrays EYER and EYEI where EYER(MBAR,M) = Real $\left\{\sum_{u} B_{n, u} F(u) I_{\bar{m}, m, u}\right\}$ and $\operatorname{EyEI}(M B A R, M)=\operatorname{Imag}\left\{\sum_{u} B_{n, u} F(u) I_{\bar{m}, m, u}\right\}$. These are also premultiplied by E^{-1} and stored as AER and AEI. (See [I], page 15.) The integrals I_{-}, m, u are evaluated using the Newton-Coates five point formula (Bode's rule) [6] $\frac{m, m}{\text { four }}$ times for each bay.

HD1063 prints a heading for each case, prints parameters identifying the case and that portion of output which is common to all flutter points for the given case.

CLOCK interrogates the internal clock and returns date and time coded as four alphameric words.

EUCLID uses values of μ from a table read into the program to construct the complex \bar{C} matrix. For each of these matrices, Sylvester's resultant is found and tabulated versus μ. This table is then searched for sign changes and for each sign change the program interpolates to find a μ value for which Sylvester's resultant vanishes. A corresponding Z value is found and the pair of values μ, Z represent a flutter point. Some checks are performed and the flutter point data along with flutter vector and figures of merit are printed out.

CBAR generates the matrix \bar{C}.

EQCHAR finds the characteristic equation of a double precision matrix. The routine handles 1×1 and 2×2 matrices as special cases. Larger matrices are first reduced to Hessenberg form $[7]$ then subroutine CHAR is called to find the characteristic equation (see Appendix VII).

CHAR uses a recursion scheme to find coefficients of the characteristic equation of a matrix which is in Hessenberg form.

SCALE generates a matrix whose determinant vanishes when real and imaginary parts of the characteristic equation of the flutter matrix have common roots. In the process of generating this matrix two scale factors are removed, one on the roots of the characteristic equation, the other on the determinant of the matrix. This is necessary because of the enormous magnitude fluctuations encountered without scaling. A recursion based on pivotal reduction is used to allow the resultant to be computed as a determinant of order n rather than $2 n-1$.

DETERM finds the determinant of a double precision matrix and scales it to prevent underflow. The true value of the determinant is RES $\times 2^{\text {NSUM }}$, where RES and NSUM are subroutine arguments.

WRITER prints a table of μ versus Sylvester's resultant from the real and imaginary parts of the characteristic equation. Flutter points are indicated where this resultant changes sign. Two scale factors are also printed which do not affect the sign.

FLUT finds the second flutter parameter, α, corresponding to the flutter value of μ.*

WROUT prints the flutter point data. The same routine also prints surrounding points used in interpolating for the final flutter point.*

VECTOR computes the flutter vector. The vector is premultiplied by the flutter matrix to give the residuals. Polar form of the vector and residuals are printed. Figures of merit are found for the real and imaginary parts of the characteristic equation at flutter. These are printed along with the characteristic equations. Finally, the determinant is computed for the flutter matrix and again for the same matrix where the eigenvalue which was subtracted on the main diagonal is increased and decreased by 2 per cent. These three determinants are printed.

INVCX inverts a complex matrix.

VECNRM normalizes the flutter vector in accordance with a scheme where each mode shape has unit rms amplitude.

[^10]CXDET finds the determinant of a complex matrix. The determinant is $X+i Y$ where X and Y are subroutine arguments.

FMM finds $F_{\text {而, } 1 \mathrm{~m}}\left(a_{1}, a_{2}, \alpha\right)$. (See $[1]$, pages $\left.51-52.\right)$
FNKT finds the $k^{\text {th }}$ derivative of $f_{m}(v)$ evaluated at $v=t$. (See page 51, [1]). The derivative of order zero is considered to be the function itself. This function has three arguments, k, m and t.

BFV evaluates the Bessel function $J_{v}(x)$ where $v=0$ or 1 .

SUMM is called by BFV to evaluate $J_{v}(x)$ when x is greater than or equal to 4.

VIII. SUBMITIING A COMPUTER RUN

The program requires that logical tape 9 be available to the program. Hence, the user must either give instructions to mount a previously generated tape, or to mount a tape to be reserved following the current run, or to mount a scratch tape for use as logical tape 9.

Program deck structure, excluding ID or JOB cards for the particular installation, is shown in the following list.
\$IBJOB card
Deck GHFLUT
Deck FMKT. - subroutine FMKT
\$ORIGIN EINS
Deck GHDUM. - subroutine GHDUMP
Deck GMML. - subroutine GMML
Deck HMML. - subroutine HMNL
Deck FMM. - function FMM
Deck CDFIN. - subroutine CDFIND
Deck FRERE. - subroutine FREQEQ
\$ORIGIN EINS
Deck CLOCK. - subroutine CLOCK
Deck LANGLY - subroutine CONTRL
\$ORIGIN ZWEI
Deck INK. - subroutine INK
Deck GPLUS. - subroutine GPLDSH
Deck BFQST. - subroutine BFQST
Deck UMKEH. - subroutine UMKEHR
Deck SUMM. - function SUMM
Deck BFV. - function BFV

$$
\begin{aligned}
& \text { Deck PFIND - subroutine FINDP } \\
& \text { Deck IFIND - subroutine FINDI } \\
& \text { Deck HD1063 - subroutine HD1063 } \\
& \text { \$ORIGIN ZWEI } \\
& \text { Deck CBAR. - subroutine CBAR } \\
& \text { Deck CHAR. - subroutine CHAR } \\
& \text { Deck EQCHA. - subroutine EQCHAR } \\
& \text { Deck SCAIE. - subroutine SCALE } \\
& \text { Deck DETER. - subroutine DETERM } \\
& \text { Deck WRITE. - subroutine WRITER } \\
& \text { Deck AFLUT - subroutine FLUT } \\
& \text { Deck WROUT. - subroutine WROUT } \\
& \text { Deck INVCX. - subroutine INVCX } \\
& \text { Deck VECNR. - subroutine VECNRM } \\
& \text { Deck CXDET. - subroutine CXDET } \\
& \text { Deck PVECT - subroutine VECTOR } \\
& \text { Deck EUCLI. - subroutine EUCLID }
\end{aligned}
$$

Computer running time depends on a variety of factors. The following guidelines may be useful in estimating running time until the user has enough experience with his own type of applications to make better estimates.

A four-mode calculation (one frequency-damping combination) takes approximately 30 seconds (based on an expected average of $2-3$ flutter points). A corresponding six-mode calculation requires about 60 to 75 seconds (4-5 flutter points on the average). If logical tape 9 is not available from a previous run, the running time estimate should include, in addition to the above, about I^{2} minutes for each value of I for which a set of data will be written on tape 9.
\cdot

APPENDIX I

FIGURES 1-6

(BLANK)
(BLANK)
(BLANK)

1.5

imiermediate tafe card

maberred data cards

1-2	3-4	5-6	7-10	11-20	21-30	31-40	41-50	51-60	61-80
01				TESTR					
02				Inverse of aspect					
03	number of chordwise modes	If zero or blank, consecutive modes atarting with ilrat are used							Chordwise mode mumbers in ascending order if cols. 5-6 are not blank or zero
04				$\begin{aligned} & \text { Mach namiber } \\ & \text { squared } \end{aligned}$					
05	Muber of g values (blank taken as 1)			g	E	g	g	5	
06	$\begin{aligned} & \text { muber of chord- } \\ & \text { wise bays } \end{aligned}$			Nonzero will suppress print out of matrices					
07	Index of first μ on this card	Index or last μ on this card		μ	μ	μ	μ	μ	
08	Total mmber or entries in μ table								
09	Index of first x on this card	Index of last k on this cerd		k	k	k	k	k	
10	$\begin{aligned} & \text { Total mumber of } \\ & \mathrm{k}^{\prime} \mathrm{s} \end{aligned}$								
11	$\begin{aligned} & \text { Option mumber (mist } \\ & \text { be } 1,2,4 \text { or } 5 \text {) } \end{aligned}$			Distance from panel edge to tunnel wall in panel spans					
12	Mimber of nonzero terms in spanwise expansion								

Fig. 4 - Data Format for User Reference

M．R．I．FLUTTER PRUGRAM DATE $=00000000 \quad$ TIME $=0000000$
$\begin{array}{lccc}\text { R．I．FLUTTER PRUGGAM DATE } & \text { S } & \text { SOOOOOOO } \\ \text { M } & \text { E（SPAN）} & \text { EICHORD）} \\ 1.3500 & 0.2500 & 0 . & 0 .\end{array}$
$\begin{array}{cc}\text { CASE } & A / 2 \\ 1 & 1.0000\end{array}$ GAMMA－BAR $=0.2831853$
$\begin{array}{rrrrr}\text { CHORD－WISE MODE } & 1 & 2 & 4 & 4 \\ 3.1415924 & 6.2831853 & 9.4247772 & 12.5663706\end{array}$

BN（U）

$\begin{array}{ccc}1 / E P H I & \text { K } & \text { Gे } \\ & 1.5000 & 0.0100\end{array}$

D－WISE MODE 142
$\begin{array}{ll} & 3.1415924 \\ \text { BN（U）} & 6.2831853\end{array}$
$\begin{array}{rrr}1.757877 & -0.483447 & -0.19772 \\ 0.009754 & 0.004050-0.00088 \\ \text { INVERSE DF ELASTIC MATRIX TIME }\end{array}$ INVERSE DF ELASTIC MATRIX TIMES INERTIA MATRIX 6．5702300E－03－0．$\quad-6.7842637 \mathrm{E}-10 \quad 0$. $\begin{array}{ccc}6.3923710 E-10 & 5.0833890 E-04 & -0.199821 E-04 \\ -0 . & 1.19982301797 E-13 \\ 5.1632369 E-13-0 . & 0.8877094 E-05\end{array}$ INVERSE OF ELASTIC MATRIX TIMES REAL PART AEROD MATRIX
INVERSE OF ELASTIC MATRIX TIMES REAL PART AEROD MATRIX $-4.8284101 \mathrm{E}-03-1.4912236 \mathrm{E}-02 \quad 3.4849515 \mathrm{E}-03-5.4058474 \mathrm{E}-03$ $\begin{array}{rrrr}1.2899855 E-03 & -1.0846157 \mathrm{E}-03 & -3.2866663 \mathrm{E}-03 & -1.2090123 \mathrm{E}-04 \\ 6.3639989 \mathrm{E}-05 & 6.9382390 \mathrm{E}-04 & -9.2068995 \mathrm{E}-05 & -9.2554983 \mathrm{E}-04 \\ 3.1987256 \mathrm{E}-05 & -8.2699311 \mathrm{E}-06 & 2.9989975 \mathrm{E}-04 & -2.7647084 \mathrm{E}-06\end{array}$ INVERSE UF ELASTIC MATRIX TIMES IMAG PART AEROD MATRIX $\begin{array}{rllll}9.1891894 \mathrm{E}-03 & 6.9303840 \mathrm{E}-03 & 1.5778516 \mathrm{E}-03 & 1.05415 \mathrm{~S} 9 \mathrm{E}-03 \\ -5.9951404 \mathrm{E}-04 & 8.5195765 \mathrm{E}-05 & 6.4234972 \mathrm{E}-04 & 3.7153926 \mathrm{E}-04\end{array}$ $\begin{array}{rrrr}2.8814861 \mathrm{E}-05 & -1.3360132 \mathrm{E}-04 & -1.4406262 \mathrm{E}-04 & -7.9678368 \mathrm{E}-00 \\ -6.2376079 \mathrm{E}-06 & 2.5414165 \mathrm{E}-05 & 2.561801 y \mathrm{E}-06 & -2.3953760 \mathrm{E}-05\end{array}$ SFA SFR
$\begin{array}{cc}\text { SFA } & \text { SFR } \\ -6 & -9 \\ -5 & -24\end{array}$
$\begin{array}{lll}45 \mathrm{E}-01 & -6 & \\ 14 \mathrm{E} 00-5 & -24\end{array}$

$\begin{aligned} & 1.12 \mathrm{E} \\ & 1.73 \mathrm{t} \\ & 5 \\ & 1.44 \mathrm{t}\end{aligned} \mathrm{-5}-21$
$\begin{array}{llll}1.73 t & 00 & -5 & -21 \\ 5.44 \mathrm{~F} & -01 & -5 & -18 \\ 1.07 E & 00 & -5 & -18\end{array}$
$\begin{array}{rrrr}1.07 \mathrm{E}-00 & -5 & -18 \\ 7.00 \mathrm{E}-01 & -5 & -17 \\ -8.56 \mathrm{~F}-01 & -5 & -20\end{array}$

로응
岩

SFR
-6
-19
-15
-11
-7
$\begin{array}{rr}7-19 \\ 7 & -15 \\ 7 & -11 \\ -7\end{array}$

$z * 1 / 3$
0.28041100

80
08
4
0
0
\vdots
\vdots
88
4
\vdots
$\dot{0}$
08
0
4
0
0
0

䋇

岩岁
00
${ }^{\circ}$ 号
$\cdots \underset{1}{N}$

$00 \exists 6 \varepsilon \cdot 1-$
$10-\exists 6 L \cdot 5-$
$003 \varepsilon 2 \cdot 2-$

LAMDA $8.33269000 \mathrm{E}-04$

 $8.33268988 \mathrm{E}-04$$8.33269000 \mathrm{E}-04$

CHARACTERISTIC EQUATIUN AT FLUTTER
$1.9083872 \mathrm{E}-09 \quad 3.5110776 \mathrm{E}-0 \mathrm{O}$
Fig． 5 －Sample Output Iisting
$\begin{array}{lll}\text { SFA } & \text { SFR } & 1 / M U \\ -6 & -39 & 0.126202 \\ -6 & -42 & 0.126202 \\ -6 & -39 & 0.126202\end{array}$
－6－39 0.126202

RES
$5.248 E-01$
$-7.830 t-01$

$-1.9117971 E-10 \quad-3.5286575 E-07 \quad-1.5675161 E-04 \quad-1.0346376 E-02$
$-1.9117971 \mathrm{E}-10-3.3286575 \mathrm{E}-07-1.5675161 \mathrm{E}-04-1.0346376 \mathrm{E}-02$
$\mathrm{P}=1.4583 \mathrm{E}-16 \mathrm{Q}=1.1065 \mathrm{E}-17 \mathrm{P} / \mathrm{P}_{1} \mathrm{~A}=-1.3480 \mathrm{E}-07 \mathrm{C} / 61 \mathrm{~A}=1.1732 \mathrm{E}-07$ $\begin{array}{lrr}P=1.4583 E-160=1.1065 E-17 P / P 1 A=-1.3480 E-07 \\ \text { LAMDA }= & 0.0008 & \text { DET }=1.3125 \mathrm{E}-161.3747 \mathrm{E}-17 \\ \text { LAMDA }= & 0.0008 & \text { DET }= \\ \text { LAMDA }= & 0.0008 & \text { DET }= \\ 43 & \text { ITERATIONS } & \end{array}$ -
 27.883655

COMPLEX RESIDUALS
$-2.91 E-10 \quad 4.37 E-11$
$\begin{array}{rr}6.37 \mathrm{E}-12 & 1.3 \mathrm{E}-14 \\ -1.46 \mathrm{E}-11 & -8.53 \mathrm{E}-14 \\ 2.48 \mathrm{E}-10 & 8.90 \mathrm{E}-12\end{array}$
 $\begin{array}{lll}\text { LAMDA }= & 0.0008 & D E T=1.3125 \mathrm{E}-161.3747 \mathrm{E}-17 \\ \text { LAMDA }= & 0.0008 & \text { DFT }=-2.1310 \mathrm{E}-111.8500 \mathrm{E}-12 \\ & 0.0008 & \mathrm{DET}= \\ & 2.1964 \mathrm{E}-11-1.9227 \mathrm{E}-12\end{array}$

$\begin{array}{lll}\text { LAMDA }= & 0.0178 & D E T=6.9088 \mathrm{E}-0 \mathrm{t}-2.530 \mathrm{SE}-07 \\ \text { LAMDA }= & 0.0123 & \text { UET }=-6.6431 \mathrm{E}-0 \mathrm{Ci} 2.4120 \mathrm{E}-09\end{array}$
Fig. 5 - (Concluded)

Fig. 6b - Hierarchy of Subroutines (Concluded)

$$
\cdot
$$

APPENDIX II

DESCRIPTION OF SCALTMG ROUTINES

Experience with an earlier version of the program showed that the range of magnitudes of Sylvester's resultant of the real and imaginary parts of the characteristic equation can be extremely wide. The object of the program is to find u values which will cause the resultant to vanish. Yet for the initial values read into the μ table the resultant may be so large as to cause overflow. Hence scaling has been used to keep these numbers in a range that the machine can handle. Binary scaling was used to avoid any loss of accuracy in scaling.

Two kinds of scale factors are used. One of these scales the roots of the characteristic equation; the other scales the reduced determinant. The scale factor applied to the roots of the characteristic equation is based on the real part of the equation and is chosen so that the magnitudes of the nonzero polynomial coefficients cluster around unity. The scale factor applied to the determinant is the product of several scale factors -- one for each row of the determinant except the last -- and is likewise chosen so that the calculated resultant is of the order of magnitude of unity.

The program prints the base 2 logarithms of these two scale factors along with a scaled resultant value. The logarithms of the scale factor for the characteristic equation and the determinant are labeled SFA and SFR, respectively. The true value of the resultant can be obtained from the printed (scaled) resultant from

$$
\mathrm{RES}_{\text {true }}=\mathrm{RES}_{\text {scaled }} \cdot 2^{\mathrm{n}^{2} \mathrm{SFA}+\mathrm{SFR}}
$$

where n is the number of modes used in the analysis. No attempt is made to print out the true resultant since much of the time this number is outside the range of magnitudes which the machine can handle.
.
-

APPENDIX III

The program obtains certain essential information from a binary intermediate tape. The program references this tape as logical tape 9. If no previously generated tape containing the required data is mounted, an input card must be punched which will cause the program to generate the tape at the beginning of the current run.

Information on logical tape 9 consists of one or more sets of data, one for each value of L from LMIN to LMAX. The upper bound for IMAX is 4 in the present program. The symbol L represents the number of chordwise bays in the panel array under study. Each set of data on the tape consists of the following sequence of seven records:

Record	Length	List	Description
1	16 words	L	Number of chordwise bays
		(MODE (J), $J=1,10)$	Chordwise mode numbers
		NSP	Number of spanwise bays
		NGBAR	Spanwise mode number
		ϵ chord	Chordwise stiffness parameter
		$\epsilon \mathrm{span}$	Spanwise stiffness parameter
		16	Intervals used in integration
2	77 words	$(\operatorname{GAMMA}(J), J=1,11)$	Frequencies γ_{j}, and $\bar{\gamma}$
		$((C(M, K), M=1, I 1), K=1,6)$	$C_{m, \bar{l}}$
3	66 words	$((D(M, K), M=1,11), K=1,6)$	$\mathrm{D}_{\mathrm{m}, \bar{\ell}}$
4	100 words	$\begin{aligned} & ((\mathrm{DJAY}(\mathrm{MB}, \mathrm{M}), \mathrm{MB}=1,10), \\ & M=1,10) \end{aligned}$	$J_{\text {皿, } \mathrm{m}}$
5	100 words	$\begin{aligned} & ((\operatorname{CAY}(M B, M), M B=1,10), \\ & M=1,10) \end{aligned}$	$\mathrm{K}_{\overline{\mathrm{m}, m}}$
6	100 words	$\begin{aligned} & ((\operatorname{ARE}(M B, M), M B=1,10), \\ & M=1,10) \end{aligned}$	$\mathrm{R}_{\mathrm{m}, \mathrm{m}}$
7	8,000 words	$\begin{gathered} (((\mathrm{GH}(\mathrm{MB}, \mathrm{M}, \mathrm{~K}), \mathrm{MB}=1,10), \\ \mathrm{M}=1,10), \mathrm{K}=1,80) \end{gathered}$	$\sum_{\ell=1}^{L}\left[G_{\bar{m}, m, \ell}(K \Delta \varphi)+H_{\bar{m}, m, \ell-1}(K\right.$

In the arrays GAMMA, C and D the subscript value of 11 refers to the spanwise mode while subscripts 1 - 10 refer to chordwise modes.

In order to form the integrals $I_{\bar{m}, m, u}$ (See $[1]$, page 52) it is necessary to integrate the products of $\mathrm{F}_{\mathrm{u}}(\ell-1+\varphi)$ times $\mathrm{G}_{\bar{m}, m, \ell}(1, p)$ and $\mathrm{H}_{\bar{m}, m, \ell}(\mathrm{~m})$.

To conserve storage the sum of $G_{m, m, \ell}$ and \bar{H}_{m}, m, l is generated and stored. For $\ell=L$, note that $H_{m, m, l}$ is zero. The subscripts of $G H(M B, M, K)$ correspond respectively to \bar{m}, m and an index representing the distance from the panel array leading edge measured in terms of the increment used in the numerical integration. Thus since $\Delta \varphi=1 / 16, K$ ranges from 1 to 16L. Since the program does not presently have the capability of analyzing 5 -bay configurations, the dimension of the array GH could be reduced to $\mathrm{GH}(10,10,64)$ to gain additional storage space for the program.

Following the data corresponding to $\mathrm{L}=\mathrm{I}_{\text {max }}$, the tape has one 16 word record indicating $L=5$. This is presently used to signal end of file.

When data for a flutter case have been read, the program searches logical tape 9 for the data set corresponding to the value of L specified on the 06 data card.

APPENDIX IV

EXPIANATION OF EXCEPTIONAL COMMON STATEMENTS

Routines SUMM, FMKT, FMM, GMML and HMML have short COMMON tables since these routines reference only a few symbols near the beginning of the COMMON list.

In routines GMML, HMML, FREREQ, CDFIND and GHDUMP an " O " is used in place of " L " in the COMMON table since L is used either in argument lists or as a DO loop index.

In routines FREREQ and GHDUMP an "ON" is used in place of "BN" since BN is used in FREREQ as a scratch variable.

Since data generated by GHDUMP are preserved on logical tape 9, and not in COMMON storage, the COMMON table for the overlay link containing GHDUMP does not agree with that of the later overlay links. In particular, the later routines do not contain the arrays $C C, C D, D D$.

APPENDIX V

Subroutine GHDUMP and the subprograms it calls communicate with the rest of the program through logical tape 9 and not through COMMON storage. Therefore, the list below is divided to show these routines separate from the other routines.

Subroutines in Overlay Containing GHDUMP

GHDIMP - reads MODE (1 - 10), NSP, NGBAR, EPY, EFX and minimum and maximum values of L. It also defines NODP $=16$.

FREREQ - computes FRER, QMM arrays.
CDFIND - computes DJAY, CAY, ARE, C, D, CC, CD, DD arrays.
GMML - computes GMM.
HMML - computes HMM.

Subroutines not in Overlay Containing GHDUMP

CONTRL - is effectually the main routine. It does not alter any quantities.

INK - is the input routine. Quantities defined are: EMSQ, EM, BSQ, BETA, BFOR, S, L, MMAX, NNN, A, TESTR, NENP, NEWGAM, NETHC, NETEIV, NEMMOD, NNST, NEWGMB, NEWDPH, MAXAL, NK, NG, and the arrays ALPHA, CKAY, GT, MODE, and SAVE.

GPLUSH - reads appropriate data from logical tape 9 into the program. This includes NSP, NGBAR, EPY, EPX, NODP, and the arrays MODE, GAMMA, C, D, DJAY, CAY, ARE and GH.

BFQST - defines Q, SS, T, BN, BUF.
UMKEHR - inverts matrix R in argument list.
PFIND - defines PREAL, PIMAG.
IFIND - defines AER, AEI, EYER, EYEI.
HD1063 - increments NSEQ.
EUCLID - computes array REST in the argument list.
CBAR - defines array CR in the argument list.
EQCHAR - defines array PRE in the argument list.
CHAR - defines array D in the argument list.
SCALE - defines NS, KRUB and array RR in the argument list.
DETERM - redefines NSUM, RES in the argument list.
FLUT - defines U, RES in the argument list.
INVCX - inverts complex matrix R in argument list.
CXDET - computes X, Y in argument list.
VECTOR - redefines array C in argument list.
VECNRM - defines array VM in argument list.

APPENDIX VI

Program Symbol	Noncommon Reference	Report Notation	Comment
A		A	Twice the distance from panel eage to wind tunnel wall.
AEI ($M B, \mathrm{M}$)		$\operatorname{Im}\left(E^{-1} C\right)$	See Section III.
AER (MB, M)		$\operatorname{Re}\left(E^{-1} C\right)$	See Section III.
ALPHA(J)			Table of μ values.
ARE(MB, M)		$\mathrm{R}_{\text {m,m }}^{\text {m }}$	See page 12, [l]*.
BETA		β	$\sqrt{M^{2}-1}$
BFOR		β^{4}	
BN(N)		$\mathrm{B}_{\mathrm{n}, \mathrm{u}}$	Coefficients of spanwise mode expansion. See Appendix E, [1].
BSQ		β^{2}	
BUF(N)		$\mathrm{B}_{\mathrm{n}, \mathrm{u}} \mathrm{F}(\mathrm{u})$	See Appendix E, [1].
C(M,L)		$\mathrm{C}_{\mathrm{m}, \mathrm{l}}$	See pages $43-44,[1]$.
CAY (MB, M)		$\mathrm{K}_{\text {m, }}^{\text {m }}$	See page 4, [l].
CC(M, N)		$\sum^{C} C_{m, 2} C_{n, \ell}$	Summation over chordwise bays.
$C D(M, N)$		$\sum^{C} C_{m, \ell}{ }^{\text {d }}$ n, ℓ	Summation over chordwise bays.
CK		k	Reduced frequency.
CKAY(J)			Table of k values.
CR(MB, M)	EUCLID	$\operatorname{Re}(\bar{C})$ and In	Flutter matrix. See Section III.
$D(M, L)$		$\mathrm{D}_{\mathrm{m}, \ell}$	See pages 43-44,[1].
$\mathrm{DD}(\mathrm{M}, \mathrm{N})$		$\sum D_{\text {m, }} D_{\text {n }}, \ell$	Summation over chordwise bays.
DJAF (MB, M)		$\sum_{\mathrm{J}_{\overline{\mathrm{m}}, \mathrm{m}}}$	See page 4, [1].
EIJ (MB,M)		$\mathrm{E}^{-1}{ }_{\mathrm{J}}$	Matrix product EINV * DJAY
$\operatorname{EINV}(\mathrm{MB}, \mathrm{M})$		$E^{-1}=\left(E_{m, m}\right)^{-1}$	See page 15, [1].
$\operatorname{EIR}(\mathrm{MB}, \mathrm{M})$		$\mathrm{E}^{-1} \mathrm{R}$	Matrix product EINV * ARE
EM		M	Mach number.
EMSQ		m^{2}	
EPX		${ }^{\boldsymbol{E}} \mathrm{y}$	Torsional proportionality constant (Section II).
EPY		ϵ_{x}	Torsional proportionality constant (Section II).
EYEI (MB , M)		$S \cdot B^{-}, m$	See page 15, [1].
$\operatorname{EYER}(\mathrm{MB}, \mathrm{M})$		$S \cdot A_{m, m}^{-}$	See page 15, [1].*
			They should read as follows:

Program Symbol	Noncormon Reference	Report Notation
FREQ(M)		
G		g
GAMMA (M)		$\gamma_{\text {m }}$
GH(MB, M, K)		
JEST(J)	EUCLID	
KRUB	EUCLID	
KIT	EUCLID	
L		L
LEST(J)	EUCLID	
MMAX		
MODE (J)		
NCASE		
NGBAR		
NNN		$\mathrm{U}_{\max }$
NODP		
NS	EUCLID	
NSP		
PIMAG		$\operatorname{Im}\left(\mathrm{P}_{\mathrm{u}}(5)\right)$
PREAL		$\operatorname{Re}\left(P_{u}(5)\right)$
PRE(J)	EUCLID	
Q		Q
QMM(M)		q_{m}
REST(J)	CONTRL	
S		s
SFOR		s^{4}
SQK		k^{2}
SQS		s^{2}
SS		S
T		T
TESTR		

Report
Notation

Comment

Frequencies of all modes in range of interest.
Structural damping coefficient.
Frequencies of modes used. See pages 40-41, [1].
See Appendix III.
Scale factor table (SFR table).
Scale factor SFA.
Count of iterative interpolations needed to find flutter.
Number of chordwise bays.
Scale factor table (SFA table).
Number of chordwise modes.
Chordwise mode numbers.
Edge condition option number. See Section V.
Spanwise mode number.
Number of terms in spanwise mode expansion.
Constant $=16$.
Scale factor SFR.
Number of spanwise bays.
See page 10, [1].
See page 10, [1].
Characteristic equation.
See page 4, [1].
See pages $39-41$, [1].
Resultant table.
Reciprocal of aspect ratio.

See page 4, [1].
See page 4, [1].
Flutter precision control parameter.
See Appendix IX.

APPENDIX VII

CHARACTERISTIC EQUATION ROUTINE

To set up the Sylvester determinant it is necessary to calculate the characteristic polynomial of the flutter matrix. An earlier version of the program made use of the Danilewski method [8], which was found to be numerically unstable [7]. The present routine calculates the polynomial in two steps. The flutter matrix is first converted to the almost triangular, or Hessenberg, form via a series of numerically stable operations [7].* The coefficients of the characteristic polynomial are then obtained using a recurrence relation derived from the general induction formula given in [9]. The two-step process proceeds as follows.

The flutter matrix is a full $\mathrm{m} \times \mathrm{m}$ matrix which is represented as

This matrix is first transformed to the Hessenberg form

$$
\left.S=\left\{\begin{array}{cccccccc}
s_{11} & s_{12} & s_{13} & \cdots & \cdots & \cdots & \cdots & \cdots \\
s_{1 m} \\
s_{21} & s_{22} & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right) \quad s_{2 m}\right\}
$$

[^11]Now let $d_{n, p}$ be the coefficient of λ^{p} in the characteristic polynomial of ${ }^{p}$ the $n \times n$ submatrix taken from the upper left hand corner of S. The recurrence relation for computing the coefficients is

$$
\begin{equation*}
d_{n, p}=d_{n-1, p-1}-\sum_{k=1}^{n-p} v_{n-1, n-k+1} s_{n-k+1, n} d_{n-k, p} \tag{VII-1}
\end{equation*}
$$

where

$$
\begin{array}{rlrl}
d_{j, j} & =1 & & \text { (including } j=0) \\
d_{j, k} & =0 & & \text { for } j<k \\
d_{j, k} & =0 & & \text { for } k<0 \\
d_{j, j-1} & = & & -\sum_{i=1}^{m} s_{i, i} \\
v_{j-1, j} & =1 & \\
v_{j, k} & =\prod_{i=k}^{j} s_{i+1, i}
\end{array}
$$

An mxm+l d matrix is obtained by application of Eq. VII-1 through the ranges

$$
\begin{aligned}
& \mathrm{n}=1,2,3 \ldots \ldots \mathrm{~m} \\
& \mathrm{p}=0,1,2 \ldots \ldots \mathrm{~m}
\end{aligned}
$$

The $m+1$ elements of the m th row of the d matrix are the required coefficients of the characteristic polynomial of the $\mathrm{m} x \mathrm{~m}$ matrix F .

APPENDIX VIII

ADMISSIBLE VALUES FOR THE TORSIONAL RESTRAINT PROPORTIONAITTY FACTOR
${ }^{\epsilon}{ }_{y}$

In the case of the finite span array (Option l) a restriction is imposed on ϵ_{y} by the sine series expansion of the spanwise deflection shape. The coefficients in the expansion are of the form*

$$
B_{n, u}=\frac{2 B^{3}}{B^{4} \bar{\gamma}_{n}^{4}-u u^{4}} \Phi
$$

where

$$
\begin{aligned}
2 B & =\text { wave length of expansion }=\lambda+2 N \\
\lambda & =s L / 2 M \\
s & =\text { inverse of aspect ratio } \\
L & =\text { number of chordwise panels } \\
M & =\text { Mach number } \\
N & =\text { number of spanwise panels } \\
\bar{Y} & =\text { frequency of spanwise mode } \\
n & =\text { number of the spanwise mode } \\
u & =\text { summation index } \\
\Phi & =\text { a transcendental function whose form is not relevant to this } \\
& \text { discussion }
\end{aligned}
$$

The frequency $\bar{\gamma}_{n}$ depends on ϵ_{y} and N whereas B depends on N, s, L and M. It is obviously possible to choose values for the above quantities such that the denominator $B^{4} \bar{Y}_{n}^{4}-u^{4} \pi^{4}$ vanishes, in which case the computer program will give an erroneous result. An inadvertent choice of such a combination of parameters will be indicated in the print-out of the expansion coefficients.

The restriction on ϵ_{y} (or more precisely on the combination ϵ_{y}, N, s, L, M) could be eliminated by causing the program to detect such a situation and artificially set B to a somewhat greater value. It is felt, however, that this modification is unwarranted because of the small probability that the situation will occur.

For the array with span extending to infinity (Option 2) the expansion coefficients contain the term $\bar{Y}_{n}^{4}-u^{4} \pi^{4}$ in the denominator which vanishes for $\epsilon_{y} \equiv 0 ; u=n$. This degenerate case is taken care of by program logic. However, it is recommended that values $0<\epsilon_{y} \ll 1$ be avoided to avert possible numerical difficulties associated with a vanishingly small (but not precisely zero) value of the denominator.

* See [1], Appendix E, Equation (E-7).

APPENDIX IX

The purpose of this Appendix is to discuss the program check denoted in the output listing by the quantities $P, Q, P / P 1 A$ and $Q / Q 1 A$ (following the characteristic equation print out), and the precision factor TESTR.

The basis for the check is the fact that, at flutter, the real and imaginary characteristic polynomials of the flutter matrix must have a common root. Referring to Section III, the flutter matrix may be written as

$$
\left\{\lambda I-\mu \mu k^{2}(1-j g) E^{-1} J+(1-j g) E^{-1} C\right\}
$$

where $\lambda=\mathrm{Z} \mathrm{\beta}\left(1+\mathrm{g}^{2}\right) / 24$ (as handled in the program). Since μ and λ can be considered independent variables with all other quantities fixed, the characteristic polyncmials may be written as

$$
\begin{aligned}
& \text { Real polynomial }=P(\lambda, \mu)=a_{m} \lambda^{m}+\ldots \ldots+a_{1} \lambda+a_{0} \\
& \text { Imag. polynomial }=Q(\lambda, \mu)=b_{m-1} \lambda^{m-l_{+}} \ldots \ldots+b_{1} \lambda+b_{0}
\end{aligned}
$$

where the a_{i} and b_{i} are real-valued functions of μ only.
Let $\quad \lambda_{F}=\lambda$ at flutter

$$
\mu_{F}=\mu \text { at flutter }
$$

Then the check criteria stated above may be written as

$$
P\left(\lambda_{F}, \mu_{F}\right)=Q\left(\lambda_{F}, \mu_{F}\right)=0
$$

The quantities appearing in the program check can now be defined as follows:

$$
\begin{aligned}
P & =P\left(\lambda_{F}, \mu_{F}\right) \\
Q & =Q\left(\lambda_{F}, \mu_{F}\right) \\
\frac{P}{P I A} & =\frac{P\left(\lambda_{F}, \mu_{F}\right)}{\left.\lambda_{F} \frac{\partial P}{\partial \lambda}\right|_{\lambda_{F}, \mu_{F}}} \\
\frac{Q}{Q I A} & =\frac{Q\left(\lambda_{F}, \mu_{F}\right)}{\left.\lambda_{F} \frac{\partial Q}{\partial \lambda}\right|_{\lambda_{F}, \mu_{F}}}
\end{aligned}
$$

Now $P / P 1 A$ and $Q / Q 1 A$ represent the Newton-Raphson recurrence relation for iteration of the polynomials with respect to λ. For example, if P is iterated holding μ fixed at u_{F}, and λ_{F} is the current estimate for λ, then the Newton-Raphson next approximation for λ is λ_{F} (1-P/PIA).

The quantities P/PIA and Q/QlA cannot be interpreted as a percentage error. However, experience with the computer program has shown that values less than about 10^{-3} imply at least four-digit accuracy in the computed values of $1 / \mu$ and $z^{1 / 3}$. On the other hand, values of the order $10^{-1} \mathrm{im}-$ ply breakdown of the computational techniques employed.

The input parameter TESTR is an upper bound on the acceptable decimal per cent error in μ. It is used in the program as follows. In searching for a zero of the Sylvester determinant the current bracketing values of μ are used to interpolate for the next approximation for μ. If

$$
\begin{aligned}
& \mu_{1}=\text { current } \mu \text { value for which determinant is positive } \\
& \mu_{2}=\text { current } \mu \text { value for which determinant is negative }
\end{aligned}
$$

μ_{1} and μ_{2} are used to interpolate for the next approximation μ_{E}. If the absolute value of the range $\mu_{1}-\mu_{2}$ is less than or equal to μ_{E} times TESTR, μ_{E} is accepted as the flutter μ.

In application of the computer program a value of 10^{-7} has been used for TESTR. The effect of using other values has not been explored.

APPENDIX X

FLOW DIAGRAMS

-

Subroutine FREQEC.

Subroutine CDFIND

Subroutine CONTRL

Note: c_{x} and c_{y} in the progran are interchanged with reference to the notation in MASA CR-80 (Ref (1)).

Subroutine FINDI

Subroutine EUCLID

Subroutine SCAIE

Subroutine DETERM

Subroutine VECTOR

APPENDIX XI

PROGRAM LISTINGS

SUBRDUTINE FREQEQ(LUL,MMI,MM2,EP,FREQ) FREQOO20
COMMON GAMMA, EPY, EPX,GMM, SS, T, O,FREQ, SAVE, COEFS, AFOR, BETA, BSO, SOK, FREQOO30 IEM, CK, S, PI, PREAL, PIMAG, HMM, DPHI, MMAX, D, XL, SMR, SMI, EYER,EYEI, CC, CD, FRE 00040 2DD, C, D, PUR, PUI, GH, BUF, DJAY, CAY, ARE, NNN, EMSO, NODP, XNODP, BEE, NEWP, FREQOOSO 3NEWGH, NEWGAM, NEWGMB, NEWDPH, ALPHA, CKAY, NEWEIV,NEWC,NNST. FRFQ0060 4DPNO,EINV,SQS,SFOR,EIJ,EIR,AER,AEI,NK,A,LNDP, QMM,MODE FREOOOTO COMMON G, TESTR,MAXAL,MMM,NCASE,NGBAR,NSP,NG,GT,NEWMOD,ON FREQOOBO DIMENSION GAMMA(11), FREQ(31), COEFS(24), EYERI10,101, EYEI(10,10), FREQ0090 LEIJ(10,10), EIR(10,10), AER(10,10), AEI(10,10), EINV(10,10), CKAY(30), FREQOIOO 2ALPHA(51), DJAY(10,10),CAY(10, 10), ARE (10, 10), BUF (20), GH(10, 10, B0), FREQ0110 3PUR (20, 80), PUI (20, 80), CC(10, 10), CD(10, 10), DO (10, 10), C(11,6), D(11FREQ0120 4,6), QMM (31), MODE (10),GT(5)

FREGO130
DIMENSION SAVE(14) FREQ0140
DIMENSION ONI20) FREQOL50
DIMENSION CSTI7) FREQOI60
$L=L U L$ FRE 00170
$M 1=$ MML FREQOLBO
$M 2=M M 2$
670 DO $671 \mathrm{~J}=2.6$
$671 \quad \operatorname{CST}(J)=0$.
$\operatorname{CST}(1)=-1$.
702 GO TO (750,750,703,704,705,706),L
$103 \operatorname{CST}(2)=-.5$
GD 10750
CST(2)=-.70710678
GO TO 750
705 CST(2) $=-80901699$
$\operatorname{CST}(3)=-.30901699$
GO TO 750
$106 \operatorname{CST}(2)=-.86602540$
$\operatorname{CST}(3)=-.5$
$750 \quad L 2=L+2$
$L H=(L+1) / 2$
DC $153 \mathrm{~J}=1 . \mathrm{LH}$
$K=12-J$
CST(K)=-CST(J)
SOLVE FREQUENCY EQUATION
FREQ0190
FREQ0200
FRE00210
FREQ0220
FRE00230
FREQ0230
FRE00250
FREQ0260
FREQ0270
FREQ0280
FREQ0290 FREQ0300 FREQ0310 FREQ0320 FRE00330 FRE00340 FREQ0350 FRE 00360 FREQ0370 FRFQ0380 DO 760 MX=M1, M2

$M K=M X$

$M=M K$
(FIM1-M2) 7553,7551,7551
7551 MK=31
$7553 \mathrm{FML}=(\mathrm{M}-1) / \mathrm{L}+1$
$M O=(M-1) /(2 * L)$
$M R=M-2 * L * M O$
IFIMR-L-1) 752.752.751
$751 \quad M R=L+L+2-M R$
$752 \operatorname{COSMU}=C S T(M R)$
$B N=3.1415$ FFML
FRE00390 FREQ0400 FREQ0410 FREQ0420

$B P=B N+1.6$

$756 \mathrm{BA} A=B N$
$1=1$
GO 1090
$V N=V$
$B A=B P$
$I=2$
GO 1090
$11 \quad V P=V$
IF(VN) 13.13.12
$V=V N$
$B A=B N$
$V N=V P$
$B N=B P$
$V P=V$
$B P=B A$
13 GO TO 15
$15 R \Delta T=V P /(V P-V N)$
DINT=BN-BP
IFIRAT-.9) 152,152.151
FRE00430
FRE00440
FREQ0450 FREQ0460 FRE00470 FREQ0480 FREQ0490 FREQ0500 FRE00510 FREQ0520 FREQ0530 FREQ0540 FREQ0550 FREQ0560 FREQ0570 FREQ0580 FRE00590 FREQ0600 FREQ06 10 FREQ0620 FREQ0630 FREQ0640 FREQ0650 FREQ0660 FREQ0670 FREQ0680 FRE 00690 FREQ0700

151	RAT $=.9$	FRE00710
	GO TO 154	FRE00720
152	IFIRAT-.1) 154, 154,153	FRFQ0730
153	RAT $=1$	FREQ0740
154	$B A=B P+R A T * D I N T$	FREQ0750
	$1=3$	FREQ0760
	GOT0 90	FREQ0770
150	IF(BN-BA) 180,20,180	FREQ0780
180	IF (BP-BA) 18,20,18	FREQ0790
18	IF (V) $16,20,17$	FREQ0800
16	$V N=V$	FREQ0810
	$8 N=B A$	FREQ0820
	GO TO 15	FREQ0830
17	$V P=V$	FRE00840
	$B P=B A$	FREQ0850
	GO 1015	FREQ0860
20	FREQ $(M K)=B A$	FREQ0870
	QMM (MK) $=E P *(S H-S I) /(2 . * B A * S I * S H-E P *(S H * C O-S I * C H) ~) ~$	FRE00880
760	CONTINUE	FRFQ0890
99	RETURN	FREQ0900
90	SI=SIN(BA)	FREQ0910
	$C O=\operatorname{COS}(\mathrm{BA})$	FREQ0920
	$E X=E X P(B A)$	FREQ0930
	$E X M=1 . / E X$	FREQ0940
	$S H=0.5 *(E X-E X M)$	FRE00950
	$C H=S H+E X M$	FREQ0960
	$V=E P *(1 .-C O * C H)+B A *(C O S M U *(S H-S I)+S I * C H-C O * S H)$	FREQ0970
	GO TO (10.11.150).I	FREQ0980
	END	FRE00990

SUBROUTINE CDFINDILI,LUL,MMI,MMZI
COF 10020
COMMON GAMMA, EPY, EPX, GMM, SS, T, Q,FREQ, SAVE, COEFS, BFDR, BETA, BSQ, SQK, COFI 10030 IEM,CK, S, PI, PREAL, PIMAG, HMM, DPHI, MMAX,O, XL, SMR, SMI, EYER, EYEI,CC, CD, COFI 0040 2DD,C,D, PUR, PUI, GH, BUF, DJAY,CAY, ARE, NNN, EMSQ, NODP, XNODP, BEE, NEWP, COFI0050 3NEWGH, NEWGAM, NEWGMB, NEWDPH, ALPHA,CKAY, NEWEIV, NEWC, NNST, CCFIOO60 4DPNC, EINV, SQS, SFDR, EIJ, EIR, AER, AEI,NK, A, LNDP, QMM, MODE COFI 0070 COMMDN G,TESTR,MAXAL,MMM,NCASE,NGBAR,NSP,NG,GT,NEWMDU,BN COFIOOBO DIMENSION GAMMAII1), FREQ(31), COEFS (24), EYER(10, 10), EYEI(10,10), COFI0090 IEIJ(10,10), EIR(10, 10), AER (10, 10), AEI(10, 101 , EINV(10,10), CKAY(30), COFIO100 2ALPHA151), DJAY(10,10),CAY(10, 10), ARE 110,10$), \operatorname{BUF}(20), G H(10,10,80), C O F 10110$ 3PUR(20, 80), PUI(20, 80),CC(10,10),CD(10,10), DD(10,10),C(11,6),D(11COF10120 4,6), OMM(31), MODE (10),GT(5)

COFIO130
DIMENSION SAVE(14)
DIMENSION BN(20)
CDFIOLSO
L=LUL
COFIO160
$\mathrm{EL}=\mathrm{L}$
COF 10170
$M 1=M M 1$
COF 10180
$M 2=M M 2$
COFIO190
MM $=$ MMAX
COFIO200
DO $36 \mathrm{MX}_{\mathrm{M}}=\mathrm{M}_{1}, \mathrm{M}_{2}$
$M K=M X$
$M=$ MODE (MK)
COFI 0210
COF 10220
$B A=F R E Q(M)$
CUFI 0230
OM $=$ OMM(M)
CDFI 0240

IF (M1-M2) 20.17 .17
$M=M K$
BA=FREQ(31)
CDF 10260
COF 10270

日M = OMM(31)
COF 10280
$M K=11$
COFIO290

GAMMA(MK) $=8 \mathbf{A}$
COFI0310
COFIO320
IF (LMOD) 24, 22,24
CDF 10330
C M IS CONGRUENT TO 1 MOD 21
$22 C(M K, 1)=1$.
COF 10340
COF 10350
$1 \cdot 221 \cdot 221$
COFIO360
221 DO $23 \mathrm{~J}=2$, L
$23 C(M K, J)=-C(M K, J-1)$
COFI0370

231 SIGND=1.
COFI 0380
SIGNO=1.
COF 10390
G0 1028
COF 10400
24 IF(LMDD-L) $30,26,30$
COFIO410


```
    FQ=FMM{PHI,O.O.M,MBAR,O.0} GMMLO270
    GMMLO280
    F1=F1-F2
    F3=F3-F4
    GMML 0290
    F5=F5-F6
    GMMLO300
    F7=F7-F8
    GMM=F1*SUMCO1-F3*SUMCD3
    GMMLO310
GMMLO320
1-F5*SUMCDS*F7*SUMCD7
    GMMLO330
END
GMMLO340
GMMLO350
```

$\begin{array}{ll}\text { SUBROUTINE HMMLIM,MBAR,LL,L1,PHI) } & \text { HMMLO020 } \\ \text { DIMENSICN GAMMAIII),FREQ(31),COEFS(24),SAVE(14) HMMLOO30 }\end{array}$
DIMENSICN GAMMA(11),FREQ(31),COEFS(24),SAVE(14) HMMLOO30
DIMENSION C(11,6), D(11,6),DD(10,10),CD(10,10),CC(10,10),EYER(10,HMML0040
1101, EYEI(10,10) HMML 0050
COMMON GAMMA, EPY, EPX,GMM,SS,T, Q,FREQ, SAVE, COEFS, BFOR, BETA, BSQ, SUK, HMML OOGO
LEM, CK, S, PI, PREAL, PIMAG,HMM, DPHI, MMAX, D, XL, SMR, SMI, EYER, EYEI,CC, CD, HMML 0070
LEM,CK,S,PI,PREAL,PIMAG,HMM, DPHI, MMAX, $O, X L, S M R, S M I, E Y E R, E Y E I, C C, C D, H M M L O O Y O$
$2 D D, C, D$ HMMLOORO
$L=L 1$ HMMLOO90
SUMCDI $=0.0 \quad$ HMML 0100
SUMCD3 $=0.0 \quad$ HMMLOI10
SUMCD5 $=0.0 \quad$ HMMLO120
SUMCDT $=0.0 \quad$ HMMLOL30
SUMCDT $=0.0$
$L L 1=L L+1$
HMMLO140
DO 20 LBAR $=$ LLI.L \quad HMMLO150
HMMLO160
$J I=L B A R-L L$
$S U M C D I=S U M C D 1+C(M, J 1) * C(M B A R, L B A R)$
SUMCDI = SUMCD1 + C(M,J1) FC(MBAR,LBAR) HMML0170
SUMCD $3=$ SUMCD $3+C(M, J 1) * D(M B A R, L B A R) \quad$ HMMLOIEO
SUMCD5 $=S U M C E S+D(M, J 1) * C(M B A R, L B A R) \quad$ HMMLO190
20 SUMCD7 $=$ SUMCD7 $+D(M, J 1) * D(M B A R, L B A R) \quad H M M L 0200$
$F I=$ FMMII.O,PHI,M,MBAR,0.01 HMMLO210
$F 2=F M M 1,0-P H I, 0.0, M, M B A R, 0.01 \quad$ HMMLO220
$F 3=$ FMMIPHI $-1.0,1.0, M, M B A R, 0.01$ HMMLO230
F4 $=$ FMM(-1.0,1.0-PHI,M,MBAR.0.01 HMML0240
$F 5=F M M(0,0$, PHI, M, MBAR, 0.01
HMML 0250
$F 7=F M M(P H I, 1.0, M, M B A R, O .01$
HMML 0260
HMML 0270
$F B=F M M(0.0,1,0-$ PHI,M,MBAR,0.0) HMMLO2BO
$F_{1}=F 1-F 2$
HMML 0290
HMML 0300
$F 3=F 3-F 4$
HMML 0300
$F 5=F 5-F 6$
HMMLO310
HMMLO320
$F 7=F 7-F 8$
HMMLO320
HMM $=$ F1*SUMCD1 - F3*SUMCD3 - F5*SUMCD5 + F7*SUMCD7 HMMLO330
RETURN
HMML 0340
END
HMML 0350
SUBRDUTINE CONTRL.
CONT0020
ONE MODE PROBLEMS NOT ALLOWED
CONT 0030
DIMENSION KODE (10)
CONTOO40
COMMON GAMMA, EPY,EPX,GMM,SS,T,Q,FREQ,SAVE, COEFS, BFOR, BETA, BSO, SGK, CONTOOSO
IEM,CK,S,PI, PREAL, PIMAG,HMH,DPHI, MMAX,L, XL, SMR, SMI, EYER, EYEI, CONT0060
$2 C, D, P U R, P U I, G H, B U F, D J A Y, C A Y, A R E, N N N, E M S Q, N O D P, X N O D P, B E E, N F W P, ~ C O N T O O 70$
3NE WGH, NEWGAM, NEWGMB, NEWDPH, AL PHA, CKAY, NEWEIV, NEWC, NNST, CONTOOBO
$\begin{array}{ll}\text { 3NE WGH, NEWGAM,NEWGMB, NEWDPH, ALPHA, CKAY, NEWEIV,NEWC, NNST, } & \text { CONT0080 } \\ \text { 4DPNO, EINV,SQS,SFOR, EIJ,EIR,AER,AEI,NK, A,LNDP, QMM, MODE } & \text { CONTOO90 }\end{array}$
4DPND, EINV,SQS, SFOR, EIJ,EIR,AER, AEI,NK, A, LNDP, QMM, MODE CONTOO90
COMMON G, TESTR,MAXAL, MMM, NCASE,NGBAR,NSP,NG,GT,NEWMOD,BN CONTOIOO
DIMENSION GAMMA(11), FREQ(31), COEFS(24), EYER(10,10), EVEI(10,10), CONTO110
$1 E I J(10,10), E I R(10,10)$, AER(10, 10), AEI (10, 10), EINV (10, 10), CKAY(30), CONTOL20
2ALPHA(51), DJAY (10,10), CAY(10, 10), ARE (10, 10), BUF (20), GH(10,10, 80), CONTOL 30

C(11,6), D(11CONTO140
CONTOL50
4,6), QMM(31), MODE(10),GT(5) CONTOLSO
$\begin{array}{ll}\text { DIMENSION SAVE(14) } & \text { CONTOLGO } \\ \text { DIMENSION BN(20) } & \text { CUNTOITO }\end{array}$
DIMENSION BN(20)
CUNTOITO
DIMENSION REST(51) CONTOIRO
$P I=3.1415927$ CONT 0190
COEFS 11) $=.999999997 \quad$ CONTO200
COEFS $(2)=-.004394275 \quad$ CONTO210
$\begin{array}{ll}\text { COEFS } 31=.000434725 & \text { CONT0220 } \\ \text { COEFS }(4)=.000122226 & \text { CUNTO230 }\end{array}$
$\begin{array}{ll}\text { COEFS }(4)=.000122226 & \text { CUNT0230 } \\ \text { CCEFS }(5)=.000043506 & \text { CONTO240 }\end{array}$

COMMON GAMMA, EPY,EPX,GMM,SS,I,Q,FREQ,SAVE,COEFS, BFOR, BETA,BSQ,SQK, INK OO 30 IEM,CK,S,PI,PREAL,PIMAG,HMM,DPHI,MMAX,L,XL,SMR,SMI,EYER,EYEI, INK 0040 $2 C, D, P U R, P U I, G H, B U F, D J A Y, C A Y, A R E, N N N, E M S Q, N O D P, X N O D P, B E E, N E W P, I N K$ OOSO 3NEWGH, NEWGAM, NEWGMB, NEWDPH, ALPHA,CKAY, NEWEIV,NEWC,NNST, INK OOGO 4DPND,EINV,SQS,SFOR,EIJ,EIR,AER,AEI,NK,A,LNDP,QMM,MODE INK OOTO
COMMON G, TESTR,MAXAL, MMM, NCASE,NGBAR,NSP,NG,GT,NEWMOD INK 0080
DIMENSION GAMAAIIL),FREQ(31), COEFS(24), EYER(10, 10), EYEI(10,10), INK OO9O
IEIJ(10, 10), EIR (10, 10), AER (10, 10), AEI(10,10), EINV(10.10),CKAY(30), INK OIOO 2ALPHA(51), DJAY (10,10), CAY(10,10), ARE(10,10), BUF(20),GH(10,10, 80), INK OL10 3PUR(20, 80), PUI(20, 80), C(11,6), D(11INK OI20 $4,6) \cdot Q M M(31), \operatorname{MODE}(10), G 7(5) \quad$ INK 0130

DIMENSION SAVE(I4\}
INK 0140
DIMENSION W(5), KW(3), KM(10) INK OL50
$\begin{array}{ll}N E W D P H=0 & \text { INK OLGO }\end{array}$
NEWEIV=0 INK 0170
NNST-
INK 0180
NE WC $=0$
NEWP=0
NEWGAM=0
NEWGMB=0
NEWMOD=0
40 READ (5.41)KG.KH.W.KM
41 FORMAT1412,2×5E10.5.10I21
C*** IF FIRS: CARD OF CASE IS BLANK, CALL EXIT
IFIKG)42,42,44
CALL EXIT
C*** BRANCH TO STORE AS INDICATED BY CARD CODE
44 GO TO $11,2,3,4,5,6,7,8,9,10,11,12), K G$
INK 0190
INK 0200
INK 0210
INK 0220
INK 0230
INK 0240

G010 11,2,3,4,5,6,7, $0,9010,11,1210 K G$
INK 0250
INK 0255
INK 0260
INK 0270
INK 0275
INK 0280


```
            RUB={CNKB*FON2*DNKB*FIN2)*(CNKB*FON3-DNKB*FIN3)
    550T T=T-0.25*RAB*RAB+COES*(RIB*(ROB-RIB)-RUB)
            @=SS*G4
    FIND LAMDA AND B
    620 GO TO (81,82,83,81,83),NCASE
    81 WHAT=S*EL/EM
    GO TO 90
    N2
    WHAT=0.
    ENN=1.
    GO 10 }9
    H3
    WHAT=S*EL/EM
    WAS=3.*A+ENN+ENN
    IF(WHAT-WAS)831.90,90
    831 WHATxWAS
    90 AMDA=0.5*WHAT
        WAS=WHAT+ENN
        [F(BEE-WAS) 138,140,138
    138 REE=WAS
        NFWP=1
C FIND BU AND FU
    140 DO 147 JU=NNST,NNN
        U=2*JU-MOD(NGBAR*NSP,2)
        UPB=U*P1/BEE
        COEB=2./(G4-UPB**4)/BEE
        GO TO (91,92,93,94,95),NCASE
    BNU=0.
    UO 916 K=1,NSP
    CNKB=C(11,K)
    DNKB=D(11;K)
    CPL=K
    CPL =(CPL + AMDA ) #UPB
    CPLM=CPL-UPA
    SINUK=SIN(CPL)
    COSUK=COS(CPL)
    SINUM=SIN(CPLM)
    COSUM=COS(CPLM)
    RUB=CNKB*FIN3-DNKB*FON3-UPB**2*(CNKB*FINI-DNKB*FON1)
    RAB=CNKB*FON3-DNKB*FIN3-UPB**2*(CNKB*FON1-DNKB*FIN1)
    ROB = (CNKB*FON2 + ONKB*FIN2)*COSUM-1CNKB*FIH2+DNKB*FON2)*COSUK
    916 BNU=BNU+COEB*(RUB*SINUK+ROB*UPB-RAB*SINUM)
    918 FU=BNU*BEE*0.5
    GO TO 98
    IF(EPX)921,921,91
921 DO 922 K=NNST,NNN
    BN(K)=0.
    922 BUF(K)=0.
    BN(NGBAR)=2.
    BUF(NGBARI=2.
    GO TO }9
    PAUSE
    GO 1O 91
    94 GO TO 941
    441 BNU =4./(PI*U)*COS(0.5*UPB*(BEE-1.))
    945 GC TO 918
    G5 ABAR=AMDA-ENN-A
    COEB=2./(U#PI)
    RUB=UPB*(1.+A)
    ROB=RUB +UPB*ABAR
    RAB=ROB+UPB
    BNU=COEB*(1.+2.*\operatorname{COS}(RUB))*{COS(ROB)-COS(RAB))
    FU=(COS (AMDA*UPB)-COS(UPB*(AMDA+1.)))/UPB
    BUF(JU)=8NU*FU
    147 BN(JU)= BNU
    9 9 ~ R E T U R N ~
    END
```

BFOS0440 RFOSO450 BFOSO460 BFUS0470 BFOSO4 80 BFGSO490 BFGSOS00 BFOS0510 BFOSO520 BFOSO530 BFOSO540 BFOSOち50 BFQS0560 BFOSOS70 BFOSO580 BFUS0590 BFQSO600 BFQS0610 BFQS0620 BFQSO630 BF QSO640 BFQS0650 BFQS0660 BF US 0670 BFOS0680 BF QS0690 BFUS 0700 BFOS0710 BFQSOT20 BFOSO730 BFOS0740 BFWSO750 BFQSO700 BFOS0770 BFOSOTRO BFOS0790 BFOSOBOO BFOSOB10 BFOS0820 BFQSO830 BFQSO840 BFOSO850 BFOSO860 BFOSOR 70 BFOSO875 BFQSOBRO BFUSOB85 BFOS0890 BF QS0900 BFOS0910 BFQS 0920 BFQSO930 BFUS0940 BF US0950 BF USO960 BFOS0970 BFUS0980 BF QS0990 BFOS 1000 BFQS 1010 BFQS 1020 BFQS 1030 RFQS 1040 BFOS 1050 BFOS 1060
$\begin{array}{ll}\text { SUBROUTINE UMKEHR(R,IF) } & \text { UMKE } 0020 \\ \text { DIMENSION R(IO.IO) } & \text { UMKF } 0030\end{array}$
$\begin{array}{ll}\text { SUBROUTINE UMKEHR(R,IF) } & \text { UMKE } 0020 \\ \text { DIMENSION R(IO.10) } & \text { UMKF } 0030\end{array}$
OIMENSION R(10.10)
UMKF 0030
$N=I F$
UMKE0040
$N=I F$
IF (N-1)31.31.38

31	$R(1 ; 1)=1 . / R(1,1)$	UMKE0060	
	G0 10 99	UMKE 0070	
38	DO $41 \mathrm{~K}=1 \cdot \mathrm{~N}$	UMKE OOHO	
	$D=R(K, K)$	UMKE 0090	
	$R(K, K)=1.0$	UMKE 0100	
50	OO $42 \mathrm{~J}=1, \mathrm{~N}$	UMKEO110	
42	$R(K, J)=R(K, J) / 0$	UMKEO120	
56	IF(K-N)43,44,44	UMKEOI 30	
43	$K P L \cup S=K+1$	UMKEO140	
51	OO $41 \mathrm{I}=\mathrm{KPLUS}, \mathrm{N}$	UMKE0150	
	$D=R \\| I ; K)$	UMKEOISO	
	$R(I, K)=0.0$	UMKEO170	
32	DO $41 \mathrm{~J}=1 . N$	UNKEO180	
41	$R(I, J)=R(I, J)-D * R(K, J)$	UMKEO190	
44	MINUS $=\mathrm{N}-1$	UMKE 0200	
53	DC $45 \mathrm{~K}=1$, MINUS	UMKEO210	
	$K P L U S=K+1$	UMKE0220	
54	DO $45 \mathrm{I}=$ KPLUS, N	UMKEO230	
	$D=R(K, I)$	UMKE0240	
	$R(K . I)=0.0$	UMKE 0250	
55	DO $45 \mathrm{~J}=1$ - N	UMKE0260	
45	$R(K, J)=R(K, J)-D * R(I, J)$	UMKE 0270	
99	RETURA	UMKE0280	
	END	UMKE 0290	

SUBRDUTINE FINDI(MAXU)
IF1N0030
COMMON GAMMA, EPY, EPX, GMM, SS, T, Q, FREQ, SAVE, COEFS, BFOR, BETA, BSQ, SLKK, IF INOO4O IEM,CK,S,PI, PREAL, PIMAG,HMM, DPHI, MMAX,L, XL, SMR, SMI, EYER,EYEI, IFINOOSO $2 C, D, P U R, P U I, G H, B U F, D J A Y, C A Y, A R E, N N N, E M S Q, N O D P, X N O D P, R E E, N E W P, \quad$ IFINOO6O 3NE WGH, NEWGAM, NEWGMB, NEWDPH, ALPHA, CKAY, NEWEIV, NEWC, NNST, IFIN0070 4DPNO, EINV,SQS,SFOR,EIJ,EIR,AER,AEI,NK,A,LNDP, QMM,MODE(10) IFINOO8O

[^12]```
 2 C. C, PUR, PUI,GH,BUF,DJAY,CAY,ARE,NNN,EMSQ,NOUP, XNODP, BEE,NEWP, HEAJOUSO
 3NEWGH,NEWGAM,NEWGMB,NEWDPH,ALPHA,CKAY,NENEIV,NEWR,NNST, HESADOOGO
 4DPNO,EINV,SQS,SFOR,EIJ,EIR,AER,AEI,NK,A,LNDP,QMM,MODE
 HE ADOOKO
 hlajuÓ0
 COMMON G,TESTR,MAXAL,MMM,NCASE,NGBAR,NSP,NG,GT, VEWMOD,BN
 HEADOOEO
 DIMENSIINN GAMMA(11),FREQ(31),CDEFS(24),EYER(10,10),EYEI(10,10), HFADOO9O
 LEIJ(10,10), EIR(10,10), AER(10,10), AEIIIO,10),EINV(10,10), CKAY(30), HEADOIDO
 2ALPHA(51),DJAY(10,10),CAY(10,10), ARE(10,10),BUF(70),GH(10,10, 80), HEADU110
 3PUR(20, 80), PUI(20, 80),
 C(11,6),D(11HEADO120
```



```
 DIMENSION SAVE(14)
 HEADO14O
 DIMENSION BN(20),KODE(10) HEADOI5O
 A):=A*0.5
 A) =A*0.5
 HFADO160
 34 WRITE (6,25)GAMMA(11)
F FORMAT(11HOGAMMA-BAR=F11.7)
 WRITE (6,26)(KODE(J),J=1,MMAX)
 FORNAT (16HOCHDRD-WISE MODEI3,9III)
 WRITE (6,27)(GAMMA(J), J=1,MMAX)
 FCRMAT(8X10F11.7)
 WRITE (6,948)(BN(J),J=1,NNN)
 FGRMAT(6HOBN(U)/(1)XLOF10.61)
 IF(SAVEIII) 99.93.99
 IF(JK-2) 94,95,95
 WRITE
 WRITE _ \ w mMAX (6,941)
 WRITE (6,943)(EIJ(J,K),K=1,MMAX)
 WRITE (6,944)
 DO 945 J=1,MMAX
 WRITE
 WRITE
 CO 947 J=L.MMAX
 WRITE (6,943)(AEI(J,K),K=1,MMAX)
941 FORMAT(47HOINVERSE OF ELASTIC MATRIX TIMES INERTIA MATRIX) HEADO4TO
143 FORMAT(IPBE15.7)
444 FCRMATIS5HOINVERSE DF ELASTIC MATRIX TIMES REAL PART AEHCD MATRIXIHEADGO&OO
99
 WRITE (6,21)DATEI,DATE2,TIMEI,TIME2,NSEQ HFADOIPO
 FORMATI32HIM.R.I. FLUTTER PROGRAM DAT[=,AG,A2,5X5HTIME=AG,AI,5OHEADOIGO
 IX,I 4)
 HEADO2DO
 HEADO210
 WRITE (6,22)EM,S,EPY,EPX,TESTR,L,MMAX,NSP,NNN,NGBAR HEADO220
 FORNAT(5X1HM9X1HS6X7HE SPAN) 2XEHE (CHORD) 4X5HTESTR 6XIHL6X4HMMAX9X1HHEADO2 3O
 IN6X4HUMAX3XI3HSPANWISE MODE/4FIO.4,E10.2,I6,4I10I HEADO240
 WRITE 16,23INCASE,AZ,NODP,CK,G HEADO25O
 FORMAT/5HOCASE5X3HA/25X6HI/DPHI4XIHK9XIHG/14,F10.4,18,2F10.41 HEACO2GO
 IF(NEWGAN+NEWGMB)92,92,24
 HE
 HE 1L0270
 HE ANC290
O
 RETURN
 HEADO510
```

END
$C$
SUBROUTINE CLOCK(TIMEI,TIME2,DATE1,DATE2)
CLOC0020
DUMMY ROUTINE TO BE REPLACED BY CLOCK ROUTINE APPROPRIATE TO
ClJCOO30
PARTICULAR INSTALLATION
ITMEI=0.
TIME2=0.
CATEI=0.
DATE2 $=0$.
RETURN
END
CLIC0040

```
 DIMENSION E(10,10), AR{10,10:, AI(10,10),DJ(10,10)
 J7=51
 JPRE=11
 OO 802 J=1.MAXAL
 802 ALP(J)=ALS(J)
 N=M
 MP=N+1
 803 INDEX=1
 1 1=1
 I2=MAXAL
 804 DO 30 IXAL=11.12
 805 AL=ALP\IXALI
C*** SET UP MATRIX CBAR
 CALL CBARIAL,G,AR,AI,E,N,CR,FACTR)
 807 CALL OVERFI(JO)
C*** FIND CHARACTERISTIC EQUATION
 809 CALL EQCHAR(CR,PRE,N)
 SYLVESTER RESULTANT
 CALL OVERFL(JD)
 GO TO (8100,810), 10
 810 IF(N) 8100,8100,811
 B100 DET=0.
 N=M
 GO TO 30
 811 CALL SCALE(R,PRE,N,JPRE,NS,KRUB)
 CALL OVERFL(JD)
 GO TO (B100,7),jO
 7 CALL DETERM(N,DET,R,NJL)
C STORE RESULTANT
 LEST(IXAL)=NS
 JFST(IXALI=KRUB+NJL
 CALL OVERFLIJOI
 CO 10 (8100,30), J0
 RESTIIXALI=DET
 GO TO (31,38,501,506), INDEX
 31 CALL WRITERIALP,REST,LEST,MAXAL,JEST)
C SEARCH FOR SIGN CHANGE OF REMAINDER
 JSUB=2
 INDEX=2
 32 DO 33 J=JSUB,MAXAL
 IF(ABS(REST(J))/REST(J)*REST(J-1)) 325,33,33
 325 JSUB=J+1
 GO IO 35
 CONTINUE
 RETURN
 INTERPOLATE FOR FLUTTER POINT
 J= JSUB-1
 I1= J7
 I 2=J7
 KIT=0
 AP=ALP(J)
 AN=ALP(J-1)
 RP=REST(J)
 RN=REST(J-1)
 JP= JEST(J)
 JN=JEST(J-1)
 LP=LEST(J)
 LN=LEST(J-1)
 [F(RP) 36,365.365
 36 DUB=AP
 AP=AN
 AN=DUB
 RUB=RP
 RP=RN
 RN=RUB
 LUB=LN
 LN=LP
 LP=LUB
 LUB=JN
 JN=JP
 JP=LUB
 365 LDIF=(LN-LP)*N+JN-JP
 INDEX=1
```

    EUC 0110
    EUC 0130
    EUC 0140
    EUC 0150
EUC 0160
EUC 0180
EUC 0180
EUC 0190
EUC 0200
EUC 0210
EUC 0220
EUC 0230
$\begin{array}{ll}\text { EUC } & 0230 \\ \text { EUC } & 0240\end{array}$
EUC 0240
EUC 0245
EUC 0250
EUC 0260
EUC 0265
EUC 0280
EUC 0280
EUC 0290
EUC 0300
EUC 0305
EUC 0310
EUC 0320
EUC 0330
EUC 0340
$\begin{array}{ll}\text { EUC } & 0340 \\ \text { EUC } 0350\end{array}$
EUC 0350
EUC 0360
EUC 0365
EUC 0370
EUC 0380
EUC 0390
EUC 0400
EUC 0410
EUC 0410
EUC 0415
EUC 0415
EUC 0420
EUC 0430
EUC 0430
EUC 0440
EUC 0440
EUC 0450
EUC 0460
EUC 0470
EUC 0480
EUC 0490
EUC 0500
EUC 0510
EUC 0510
EUC 0520
EUC 0520
EUC 0530
EUC 0540
EUC 0550
EUC 0560
$\begin{array}{ll}\text { EUC } \\ \text { EUC } & 0570\end{array}$
EUC 0570
EUC 0580
EUC 0590
EUC 0600
EUC 0610
EUC 0620
EUC 0630
EUC 0640

| EUC |  |
| :--- | :--- |
| EUC | 0650 |

EUC 0650
EUC 0660
EUC 0670
EUC 0680
EUC 0690
EUC 0700
EUC 0710
EUC 0720
EUC 0730
EUC 0740
EUC 0750
EUC 0760
EUC 0770
EUC 0780
EUC 0790
EUC 0800

|  | IWOL=2.**LDIF | EUC | 0810 | |
|---|---|---|---|---|
| 47 | RANGE = AN - AP | EUC | 0820 |
|  | DUA =RN/RP*TWOL | FUC | 0830 |
|  | RATID=1./(1.-DUB) | EUS | 0850 |
|  | IF(RATIO-.9) 372.372.371 | EUC | 0860 |
| 371 | RATIO:.9 | EUC. | 0870 |
|  | G0 TO 374 | EUC | 0880 |
| 372 | IFIRATIO-. 11 373.374.374 | EUC | 0890 |
| 373 | RATIC=. 1 | EUC | 0900 |
| 374 | ALP(J7) $=A P+$ RATIO*RANGE | EUC | 0910 |
|  | G0 10804 | EUC | 0920 |
| $C$ | TEST FOR ACCEPTANCE OF ALPHA | EUE | 0930 |
| 38 | IFIABS(RANGE )-TESTRFAN ) 42,42,39 | EUC | 0940 |
| 39 | (FIREST(JT) 40.41 .41 | Euc. | 0950 |
| 40 | RN=REST(J) | EUC | 0960 |
|  | KIT=KIT+1 | EUC | 0970 |
|  | LN=LEST(J7) | EuC | 0980 |
|  | JN=JEST(J7) | EUC | 0990 |
|  | IF (AN-AL) 401,42,401 | EUC | 1000 |
| 401 | $A N=A L$ | EUC | 1010 |
|  | GO 10 37 | EUC | 1020 |
| 41 | $R P=R F S T(J 7)$ | EUC | 1030 |
|  | $K I T=K I T+1$ | FUC | 1040 |
|  | LP=LEST(J7) | Euc | 1050 |
|  | JP=JEST(J7) | EUC | 1060 |
|  | 1F(AP-AL) 411.42,411 | EUC | 1070 |
| 411 | $A D=A L$ | EUC | 1080 |
|  | GO 1037 | EUC | 1090 |
| 6424350 | WRITE FLUTTER DATA AND LOOP | EUC | 1100 |
|  | LSC=LEST(J7) | EUC | 1110 |
|  | CALL FLUT (PRE,N,LSC,U,RES,JPRE, I) | EUC | 1120 |
|  | 1 NDEX $=3$ | EUC | 1130 |
|  | $A F=A L$ | EUC | 1140 |
|  | LF=LEST (JT) | EUC | 1150 |
|  | JF=JEST(JT) | EUC | 1160 |
|  | RF=REST (J7) | EUC | 1170 |
|  | $\triangle L P(J T)=A N$ | EUC | 1180 |
|  | GC TO 804 | EUC | 1190 |
| 501 | LSC=LEST(J7) | EUC | 1200 |
|  | CALL FLUT (PRE,N,LSC,UN,RES,JPRE, 1 ) | Euc | 1210 |
|  | [ NDEX=4 | EUC | 1220 |
|  | $A L P(J 7)=A P$ | EUC | 1230 |
|  | GO TO 804 | EUC | 1240 |
| 506 |  | EUE | 1250 |
|  | CALL FLUTIPRE,N,LSC,UP, RES, JPRE, 1 ) | EUC | 1260 |
|  | WRITE16,507) KIT | EUC | 1270 |
| 507 | FORMAT(IXI5,1LH ITERATIONS) | EUC | 1260 |
|  | KIT $=0$ | EUC | 1290 |
| 508 | CALL WROUT (AF, U,RF,LF, O, JF,F12) | EUC | 1300 |
|  | CALL WROUT (AN, UN,RN,LN,I, JN,F12) | EUC | 1310 |
|  | CALL WROUT(AP,UP,RP, LP, 1, JP, F12) | EUC | 1320 |
| 5 , | CALL CBAR (AL, G, AR, AI, E, N, CR,FACTR) | EUC | 1330 |
| 50 | 1 NDEX $=2$ | EUC | 1340 |
| 57 | CALL VECTOR ( U,CR,N,L,DJ) | EUC | 1350 |
| 5 H | IF(JSUB-MAXAL) $32,32,34$ | EuC | 1370 |
|  | FND | EuC | 1380 |
| C*** | SUBROUTINE CBAR(AL,G,AR,AI,E,N,CR,FACTR) | CBAROO20CBAR0025 |  |
|  | SET UP MATRIX CBAR <br> DOUBLE PRECISION CR(10,20) | CBA | R0025 |
|  | DIMENSIGN E(10,10), AR 110,10$)$, AI (10,10) | CBA | 20040 |
|  | $P=F A C T R$ | CbA | 20050 |
|  | ALF=AL*P | CBA | 20060 |
|  | DU ROG J=1,N | CAA | 20070 |
|  | DO 806 K=1,N | CBA | K0080 |
|  | $P=E(J, K)$ | CBA | 20090 |
|  | $Q=A R(J, K)$ | CBA | R0100 |
|  | $R=A \\|(J, K) * G$ | CRA | RO110 |
|  | $S=A!(J, K)$ | CRA | RO120 |
|  | $T=\operatorname{AR}(J, K) * G$ | CBA | RO130 |



SUBROUTINE EQCHAR(AA,PRE,N1)
DHE 00010
DUBLE PRECISION AA 10,20$), A(10,20), D(11,22), \times(20)$, TEMP, TEMPI, DENOCHEOOO30
DCUBLE PRECISION AA 10,20$), A(10,20), D(11,22), X(20)$, TEMP, TEMPI, DENOCHEOOO30
DOUBLE PRECISION PRE(22)

N=N1 CHFQ0050
$M=\mathrm{N}$ CHEOOO6O
$M 1=M-1$ CHEQ0070
$M 2=M-2$
PRE $(N)=0$. CHEQ0090
PRE $(N+11)=0$ CHECOLOO
IF(M2)140,130,143 CHEQO110
130 PRE(1) =AA(1,1)*AA(2,2)-AA(1,2)*AA(2,1)-AA(1,11)*AA(2,12)+AA(1,12)*CHEOOL20 1AA(2,11) CHE00130
PRE $(12)=A A(1,1) \neq A A(2,12)+A A(1,11) * A A(2,2)-A A(1,2) \neq A A(2,11)-A A(2,1) C H E Q O 140$
1*AA(1,12)
CHEOO150
$\operatorname{PRE}(2)=-A A(2,2)$
CHEQO160
PRE(13) $=-A A(2,12)$
CHEOO1 70
$140 \operatorname{PRE}(N)=\operatorname{PRE}(N)-A A(1,1)$
CHE00180
PRE(N+11)=PRE(N+11)-AA11,11)
GO TO 92
143 DO $144 \mathrm{~J}=1, \mathrm{~N}$
DO $144 \mathrm{~K}=1, \mathrm{~N}$
CHE 00190
CHEQO2OO
$A(J, K)=A A(J, K)$
Q0210
CHE 00220

144 A(J, K+10)=AA(J, K+10)
INSURE MAXIMUM SUB-DIAGDNAL ELEMENT AT PIVOT CHECO250
100 REFM=A(M,ML) $\ddagger \neq 2+A(M, M 1+10) \neq \# 2$
I = M1
DO $104 \mathrm{~J}=1, \mathrm{M} 2$
$\operatorname{REFT}=A\left(M_{i} J\right) * * 2+A\left(M_{1} J+10\right) * * 2$
[F(REFM-REFT)101,104,104
REFM=REFT
IF(I-M1)210,105,105
105 IF(REFM) 106, 106,22
C DECDUPLED
106 WRITE 6,107 )
WRITE( 6,108$)((A(J, K), K=1, N), J=I, N) \quad$ CHEOO380
WRITE\{6,107)
$W R I T E(6,108)(\{A \mid J, K+10), K=I, N), J=1, N) \quad$ CHEQ0400
(ORMATIIOH DECOUPLED)
N1=0
GC TO 92
108 FORMAT(6(DI1.3.2X))
INTERCHANGE RDWS AND COLUMNS
210 DO $212 \mathrm{~J}=1$. M
TEMP=A(J,I)
TEMPI=A(J,I+10)
$A(J, I)=A(J, M I)$
$A(J, I+10)=A(J, M 1+10)$
A(J,M1+10)=TEMPI
212 A(J,M1) = TEMP
OO $213 \mathrm{~J}=1 . N$
TEMP $=A(M 1, J)$
TEMPI=A(ML,J+1.0)
A(ML, J) =A(I, J)
$A(M 1, J+10)=A(I, J+10)$
$A(1, J+10)=T E M P I$
213 A(I.J) =TEMP
SIMILARITY TRANSFORM
$D E N O=A(M, M 1) *=2+A(M, M 1+10) \neq * 2$
TEMP =A $M, M 1) / D E N O$
TEMPI $=-A(M, M 1+10) / D E N O$
DO $30 \mathrm{~J}=1, \mathrm{M} 2$
$X(J+10)=A\left(M_{*} J\right) * T E M P\left\{+A\left(M_{*} J+10\right) \neq T E M P\right.$


Enc

```
 SLBRCUTINE SCALEIRR,P,NN,JPRE,NS,KRUE)
 CCLELE PRECISICN RR(11,10),R(11,10),P(22),SF,RUB
 A=\^
700
 EN=A
 NP=N+1
 CC 1 J=1,N
 K=NP-J
 JPR=JPRE+J
 R(1,K)=F(JPR)
1R R(AP,K)=P(J)
701 SUNN2=(N*AP*(N+NP))/G
 SCA=0.
 CC 410 J=1,N
 C=J
 AB=CABS(R(NP,J))
 IF(AB) 410,410,409
409 RCG2=C*ALCG(AE)
 SCA=SCA +RCG2
410 CLNTINUE
 NS=ABS (1.44270*SCA/SUMN2)+.5
 IF(SCA) 410C.4101.41C1
4100 NS=-NS
41C1 FAC=1.0
 SF=0.5**NS
 DC 411 K=1,N
 FAC=FAC*SF
 R(1,K)=R(1,K)*FAC
411 R(NP,K)=R(NP,K)*FAC
 DC }5K=2,
 RUB=-R(K-1,1)
 R(K,N)=RLE*R(NP,N)
 CC 5 J=2,N
 R(K,J-1)=R(K-1,J)+RUB*R(NP,J-1)
60 KRUB=0
 NM=A-1
C
 CC 307 J=1,NM
 RUB=0.
 DC 304 K=1,N
 AB=CABS(R(J,K))
 IF(AB) 301,304,301
301 RCG2=ALCG(AB)*1.4427
 RUR=RUB+RCG2
304 CCNIINUE
 LRUB=RUB/EN+.5
 KRUE=KRUB+LRUB
305 SF=C.5**LRUE
 CC 306 K=1,N
306 RR(J,K)=R(J,K)*SF
307 CCNTINUE
 DC 308 K=1,N
308 RR(N,K)=R(N,K)
9 9 ~ R E T U R N
 END
SCALZ210
SCAL2230
SCAL2260
SCAL2270
SCAL2280
SCAL2290
SCAL2300
SCAL 2310
SCAL 2320
SCAL2330
SCAL2340
SCAL 2350
SCAL2360
SCAL2370
SCAL2380
SCAL2390
SCAL2400
SCAL2410
410 CCNTINUE
SCAL2420
SCAL2430
SCAL 2440
SCAL2450
SCAL2460
SCAL2470
SCAL2480
SCAL2490
SCAL 2500
SCAL2510
SCAL 2530
SCAL2540
SCAL2550
SCAL 2560
SCAL2570
SCAL 2580
SCAL2590
SCAL2600
SCAL2610
SCAL2620
SCAL2630
SCAL2640
SCAL 2650
SCAL2660
SCAL2670
SCAL2680
SCAL2690
SCAL2700
SCAL2710
SCAL2720
SCAL2730
SCAL2740
SCAL2750
SCAL2760
SCAL2770
SCAL2780
```

        SUBRCUTINE CETERM(MM,RES,R,NSUM)
    C*** DCUBLE PRECISION CETERMINANT
DCUBLE PRECISICN R(11,10),A(10,10), DET,RES,OSIGN,AB,RUB,RA
$M=N N$
NSUM $=0$
IF(M-1) 26,26,27
DETE 0650
DETE0660
DETE0670
DETE06BO
OETE0690
DETEOTOO
$26 \mathrm{DET}=\mathrm{R}(1,1)$
GC TC 99
27 DC $28 \mathrm{~J}=1, \mathrm{M}$
DC $28 K=1, M$
$28 \quad A(J, K)=R(J, K)$
(FT1)
DC $28 \mathrm{~J}=1, \mathrm{M}$
DC $28 K=1, \mu$
$A(J, K)=R(J, K)$ DETEOT10 DETEOT20 DETE0730 DETE0740 DETEO750

```
C
 DSIGN=1. KLCOP
DETE0760
 DO 30 LT=2,M
DETE0770
DETE0780
K=LT-1
L=0
BIG=0.
DO 100 I = K,M
AR=DABS(A(K,I))
IF(BIG-AB) 150,100,100
150 L=I
BIG=AB
100 CONTINUE
IF(L) 16,16,13
IF(K-L) 14,5,5
C IF DIAGONAL ELEMENT IS NOT MAX, INTERCHANGE COLUMNS
14 DO 8 J=K,M
RUB=A{J,K|
A(J,K)=A(J,L)
8 A JJLl)=RUB
DSIGN=-DSIGN
IF(A(K,K)) 5,13,5
C
5 RA=1./A(K,K)
DO 3 I=LT,M
AB=RA*A(I,K)
DO 3 J=LT,M
3 A(I,J)=A(I,J)-AB#A(K,J) DETE1020
AlI,JI=AI
C FORM PRODUCT OF DIAGONAL ELEMENTS DETELO4O
4 006 J=2,M
SCALE TO PREVENT UNDERFLOW
B=DABS(A(J.J))
 IF(B) 16,16,50
50 N=1.4427*ALOG(B)
 NSUM=NSUM+N
 & A(J,J)=A(J,J)*:(.5**N)*A(J-1,J-1)
GK DET=DSIGN*A(M,M)
GH DET=DSIC
C. RETURN M, MATRIX IS SINGULAR. UNREMOVABLE ZERO ON DIAGONAL
C. RETURN MATRIX IS SINGULAR. UNREMOVABLE ZERO ON DIAGONAL
C. RETURN MATRIX IS SINGULAR. UNREMOVABLE ZERO ON DIAGONAL
 GC In 98
 END
DETEO%GO
DFTEOROO
DETEORIO
DETE0820
DETE0830
DETEO840
DETE0850
DETE0860
DETE0870
DETEO8%O
DETEO890
DETE0900
DETE0910
DETE0920
DETE0930
DETE0940
DETE0950
DETEO950
DETE0960
C HETARK,KID SOEDU
DETE0970
REDUCTION LOOP
DETt0980
DETEO9HO
DETE0990
DETE0990
DETE1010
30 CONTINUE D,J)-AB*A(K,J)
DETE1020
DETE1040
DETE1050
C
DETE1060
DETE1070
 IF(B) 16,16,50
DETF1OQO
DETE1090
OETE1100
 M)
DETEII10
DETE1110
DETE1120
C
DETE1140
OETEL150
```



```
DETEL160
DETE1170
 EN
DETE1180
```


SUBROUTINE FLUTIPRE, NR,NS,U,RES, JPRE,I)
DOURLE PRECISION PRE(22),AIII), BIIL),C(11), DENOM,ROOT,UU,PSUM,
FLUT0070
DOUBLE PRECISION PRE(22),AIII), B(11),CIII), DENOM, ROOT, UU, PSUM,
FluT00
FLUT0080
I PDSUM, QSUM, QDSUM,REST
IN=I
$N=N R$
$N=N R$
$J P R=J P R E$
FLUT0090
FLUTO140
flutolso
COPY THE CHARACTERISTIC POLYNOMIALS FLUTOI60
C COPY THE CHARACTERISTIC POLYNOMIALS
FLUTOlSO
FLUTO160
FLUTO160
$J J=N+1$
FLUTOL70
FLUTO180
DO $2 \mathrm{~J}=1$ !.JJ
flutol90
A(J) $=$ PRE(J) FLUT0200
J11=J+11
B(J)=PRE(J11)
NH=N-1
DENOMEA (N)
DO 3 K=1,NM
$B(K)=B(K) / D E N O M$
$B(N)=1$.
NO $=\mathrm{N}-1$
AA=A(1)/B(1)
$D E N O M=A(N O+1)-B(N O)-B(N O+1) * A A$
DO $10 \mathrm{~K}=1 \mathrm{NO}$
$C(K)=(A(K+1)-B(K)-B(K+1) * A A) / D E N O M$
If(N-3) 30.30,14
$A(N)=B(N)$
DO $15 \mathrm{~J}=1$.NO
$A(J)=8(J)$
B(J) $=C(J)$
$\mathrm{N}=\mathrm{N}-1$
60 TO 6
ROOT=-C(1)
IFIIM)25,20,25
20 REST=B(2)+B(1)/ROOT+ROOT
RES=REST
100 RETURN
C CALCULATE SECOND ORDER ESTIMATE OF ROOT
$0032 \mathrm{~J}=1 . \mathrm{JJ}$
A(J) = PRE(J)
$J 11=J+11$
32 B(J)=PRE(J11)
PSUAF=A(NR+1)
PDSUM=0.

ODSUA=0.
DO $35 \mathrm{~K}=1$, NR
$L=N R-K+1$
XL=L
PSUM=RODT*PSUM+A(L)
PDSUM=ROOT*PDSUM+A(L+1)*XL
QSUM=ROOT*QSUM+B(L)
QDSUM=ROOT FQDSUM+B(L+1)*XL
$U U=1.5$ (PSUM/POSUM+QSUM/QDSUM)-ROOT1
U=UU
GO TO 100
END
SUBRDUTINE WROUT(A,U,R,LiN,JL,FAC)
FLUTTER POINTS FOR PANEL
A3=(U*FAC申2.) ) * . 33333333
$R U=1 . / A$
IF(N) 617,617.619
$\mathrm{N}=\mathrm{N}-1$
RODT=-C(1)
(FIIM)25,20,25
RES=REST
C CALCULATE SECOND ORDER ESTIMATE OF ROOT
$0032 \mathrm{~J}=1 \mathrm{I} \mathrm{JJ}$
(J)=PRE(J)
$J 11=J+11$
32 B(J)=PRE(J11)
PSUAF=A(NR+1)
PDSUM=0.
ODSUM=0.
DO $35 \mathrm{~K}=1$, NR
$L=N R-K+1$
XL=L
PSUM=RODT*PSUM+A(L)
OSUM=RODT*OSUM+B(L)
ODSUM=ROOT*QDSUM+B(L+1)*XL
UU=1.5* (PSUM/POSUM+QSUM/QDSUM)-ROOT)
60 TO 100
END
SUBROUTINE WROUT(A,U,R,LiNiJL,FAC)
FLUTTER POINTS FOR PANEL
A3=(U*FAC*2.) क** 33333333
IF(N) 617,617.619
WRITE
(6,618)
FORMAT (1HO7X2HMULOX6HZ**1/315X5HLAMDA10X3HRES7X7HSFA SFR4X4H1/MU) BEWARE SYMBDLS FOR MU AND ALPHA ARE INTERCHANGED BACK
$(6,620) A, A 3, U, R, L, J L, R U$
FORMAT(F14.6,F16.8.1PE19.0.E14.3,16.14,OPF11.6)
RETURN
END
WROU0020
WROU0030 WROU0040 WROU0050 WROU0060 WROU0070 WROU0080 WROU0090 WR DUO100 WROUO1:0 WROUOL 20 WROU0130

## SUBRDUTINE VECTOR(EW,C,I.L,D.J)

VECT1180
DOUBLE PRECISIOM P(22),C(10,20)
COMPLEX R(10), CK(10),S(10,10),S5
DIMENSION VM(10),VT(10), DJ(10,10)
$\mathrm{M}=\mathrm{I}$
CALL EOCHAR(C,P,M)
MN=M-1
FORM CB=C+EIGENYALUE末I
DO 5 Jwi.M
$C(J, J)=C(J, J)+E W$
VECT1280
COPY CB MATRIX
$199 \mathrm{~J}=1$, M
DO $199 \mathrm{~K}=1, \mathrm{M}$

CALL INVCX(S,MN)
REDUCED CB MATRIX

MULTIPLY INVERSE\#(-LAST COLUMN)
DO $10 \mathrm{~J}=1, \mathrm{MN}$
$R(J)=0$.
On $10 \mathrm{k}=1, \mathrm{MN}$
$R(J)=R(J)-S(J, K) * S(K, M)$
R(M)=1.
WRITE(6.12)
FORMAT(9HOVECTOR R,9X5HTHETA,11X17HCOMPLEX RESIDUALS) CONVERT TO POLAR FORM
$0016 \mathrm{~J}=1, \mathrm{MN}$
$V M(J)=(A B S(R(J))$
VT(J)=ATAN2(AIMAG(RIJ)), REAL(R(J)))
$V T(J)=A M O D(V T(J)+6.2831953,6.2831953)$
CALL VECNRM(VM,L,M,DJ)
$V M(M)=1$.
$V T(M)=0$.
1 max $=0$
VMAX $=1$.
DC $20 \mathrm{~J}=1, \mathrm{MN}$
If(Vmax-vmiJl) 17,20,20
Vmax $=\mathrm{Vm}(\mathrm{J})$
1 Max $=J$
vThET=VTIIMAXI
continue
(FIIMAX) 23.23.21
21 DO $22 \mathrm{~J}=1, \mathrm{M}$
VM(J) $=$ VM(J)/Vmax
VTIJ) $=$ VT(J)-VTHET
MULTIPLY VECTOR BY MATRIX FOR CHECK
$0024 \mathrm{~J}=1, \mathrm{M}$
CK(J) $=0$.
DO $200 \mathrm{~K}=1, \mathrm{M}$
SS = CMPLX(CiJ,K),C(J,K+10))
CK(J)=CK(J)+SS*R(K)
DC $201 \mathrm{~N}=1, \mathrm{M}$
DC $201 \mathrm{~K}=1$, M
$201 S(N, K)=C M P L X(C(N, K), C(N, K+10))$
24 WRITE (6,25)VM(J),VT(J),CK(J)
25 FCRMATI2F12.6,
1PE18.2,E11.2)
C*** FIND FIGURES OF MERIT
E=EW
U $=$-EW
PMU=U+P(M)
$P M U P=M$
$0 M U=P(M+11)$
QMUP $=0$.
$M M 1=M-1$
DO $108 \mathrm{~J}=1$, MMI
$k=M-J$
$C A A=K$
$P M U=P M U * U+P(K)$
$Q M U=Q M U * U+P(K+11)$
PMUP $=P M U P * U+P(K+1) * C A A$
$Q M U P=Q M U P * U+P(K+12) * C A A$
R3 = PMU/ ( $P$ MUP**U)
R4= MMU/ (QMUP*U)
$M P=M+1$
WRITE $(6,628)$
WRITE(6,629) (P(J),J=1,MP)
WRITE(6,629) (P(J+11),J=1,M)
6. 28 FORMAT(35HOCHARACTERISTIC EQUATION AT FLUTTER)

629 FDRNAT(IP8E16.7)
WRITE (6,631) PMU,QMU.R3,R4
630 FGRMAT(7H LAMDA $=$ F10.4,8H DET $=$ IP2E11.4)
631 FORMAT(3HOP=1PE11.4,3H $Q=E 11.4,7 \mathrm{H} P / P 1 A=E 11.4,7 \mathrm{H}$ Q/Q1A=E11.41
FORMAT(3HOP=1PE11.4,3H Q=E11.4,7H P/P1A=E11.4,7H Q/OLA=E11.4) VECT2090


```
2H AIJ,Ki=R(J,K)
OSIGN=1.
K LOOP
00 30 LT=2.M
K=LT-L
IF(CABS(AIK,K))/5,7,5
LERO ON MAIN DIAGONAL. INTERCHANGE ROWS
7 IF(M-K) 16,16,71
71 L=LT
14 DO B J=K,M
 RUB=A(J,K)
 A!J,K)=A(J,L)
 A(J,L)=RUB
 DSIGN=-DSIGN
 IF(CABS(A(K,K))\5,13,5
ZERO STILL ON DIAGONAL
 L
 13
C
 6 A(J,J)=A(J,J)*A(J-1,J-1)
 98 DET=DSIGN*A(M*M)
 X=REAL (DET)
 Y=AIMAG(DET)
 99 RETURN
C
 MATRIX IS SINGULAR,UNREMOVABLE ZERO ON DIAG
 OSICN=0.
 GC 10 98
 END
CXDT0413
CXIIT0414
CX1)T0415
C
CxOTO416
CXDT0417
Cx010418
=L+1
IF(L-M)14,14,16
 REDUCTION LODP
 RA= 1. /A(K,K)
 DO }3I=LT,
 AB=RA*A(I,K)
 DN 3 J=LT,M
 A(I,J)=A(I,J)-AB*A(K,J)
 30 CONTINUE
 FORM PRODUCT OF DIAGONAL ELEMENTS
 DO 6 J=2,M
CXDT0419
8
C
13
\(\mathrm{C}_{5}\)
\(R A=1 . / A(K, K)\)
DO \(3 \quad I=L T, M\)
Dก \(3 \mathrm{~J}=\mathrm{LT}, \mathrm{M}\)
\(A(I, J)=A(I, J)-A B * A(K, J)\)
```

```
FORM PRODUCT OF DIAGONAL ELEMENTS
DO \(6 \mathrm{~J}=2, \mathrm{M}\)
\(6 \quad A(J, J)=A(J, J) * A(J-1, J-1)\)
98 DET=DSIGN*A(M,M)
\(Y=A I M A G(D E T)\)
TURN
C 1098
END
CXOIO420
CXDTO421
CXOTO422
CXOTO423
CXOTO424
CXDTO425
CXUTO426
CXDT0427
CXDIO428
CXDTO429
CXDTO430
CXDT0431
CXOTO432
CXDTO433
CXDTO434
CXDTO435
EXDTO436
CXDTO437
CXDTO438
CXDTO439
CXOT 0440
CXDTO441
CXOTO442
CXDTO443
CXITr0444
CXDTO445
```

FUNCTION FMM (A1, A2, M, MBAR,ALPHA)
DIMENSION GAMMAIIII
COMMON GAMMA
GAM4 $=$ GAMMA (M) $* * 4$
FMOL $=$ FMKT $(O, M, A 1)$
FMII =FMKT(1,M,A1)
FM21=FMKT (2,M,A1)
FM3I = FMKT(3,M,A1)
IALF $=A L P H A+1$.
GC TO $(5,3,4)$, IALF
5 FMAOL=FMOL
FMALI=FM11
FMAC1 =FM21
FMA31 =FM31
GO TO 2
FMAOL=FMIL
FMA11=FMZ1
FMA21=FM31
FMA31=FMKT14,M,A1)
GO TO 2
FMAOL=FM21
FMA11 =FM31
FMA2l=FMKT(4,M,A1)
FMA3I =FMKT (5,M,A1)
2 IF (M-MAAR) $10,1,10$
$F$ MOL $=F$ MK $T(0, M, A 2)$
FM12=FMKT(1,M,A2)
$F M 22=F$ MKT $(2, M, A 2)$
FM32 $=F \operatorname{MKT}(3, M, A 2)$
6 TERML $=0.25$ *A2*FMAO1 FFMO2
TERM2 $=0.25$ *A2* (FMA1 1 *FM32 2 FMA 31*FM121
TERM $3=0.125 *($ FMAZ1*FM12 2 FMA1 1*FM22)
TERM4 = 0. 25*A2*FMA21*FM22
FMM 0020
FMM 0030
FMM 0040
FMM 0050
FMM 0060
FMM 0070
FMM 00PO
FMM 0090
FMM 0100
FMM 0110
FMM 0120
FMM 0130
FMM 0140
FMM 0150
FMM 0160
FMM 0170
FMM OLBO
FMM 0190
FMM 0200
FMM 0210
FMM 0220
FMM 0230
FMM 0240
FMM 0250
FMM 0260
FMM 0270
FMM 0280
FMM 0290
FMM 0300
FMM 0310
FMM 0320
FMM 0330
FMM 0340

|  | IERMS = 0.375* (FMAO1*FM32 +FMA31*FMO2) <br> FMM $=$ TERM 1 + (IERM4 + TERM5-TERM2-TERM3)/GAM4 | FMM fMM | $\begin{aligned} & 0350 \\ & 0360 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | RETURN | FMM | 0370 |
| 10 | FMO2 $=$ FMKT (0, MBAR, AZ) | FMM | 0380 |
|  | FM12=FMKT (1, MBAR , A2) | FMM | 0390 |
|  | FM22=FMKT(2,MBAR,A2) | FMM | 0400 |
|  | FM32=FMKT(3,MBAR, A2) | FMM | 0410 |
|  | GAMB4=GAMMA (MBAR) $⿻$ ( \% $^{4}$ | FMM | 0420 |
|  | FMM = (FMA31*FM02-FMAO1*FM32+FHA11*FM22-FMA21*FM12)/(GAM4-GAMB4) | FMM | 0430 |
| 999 |  | FMM | 0440 |
|  | END | FMM | 0450 |
|  | FUNCTION FMKT(K, M, T) | FMKT | T0020 |
|  | DIMENSION GAMMA(11) | FMKT | 10030 |
|  | COMMON GAMMA |  | 10040 |
|  | SINH(EX) $=0.5 *(E X-1.0 / E X)$ |  | 10050 |
|  | COSH(EX) $=0.5 *(E X+1.0 / E X)$ | FMK | 10060 |
|  | GAM=GAMMA(M) | FMK | 10070 |
|  | $A R G=T * G A M$ | FMKT | T0080 |
|  | $E X=E X P(G A M)$ | FMKT | T0090 |
|  | $S H=(E X-1.0 / E X) * 0.5$ | FMKI | 10100 |
|  | EX=EXP (ARG) | FMK | 10110 |
|  | $K 1=k+1$ | FMKT | 10120 |
|  | GO TO (1,2,3,4,1,2),K1 | FMK | 10130 |
| 1 | FMKT=(SIN(ARG)-SIN(GAM) \#SINH(EX)/SH)*GAM**K | FMKI | 10140 |
|  | GO 1099 |  | T0150 |
| 2 |  |  | T0160 |
|  | GO TO 99 | FMK | T0170 |
| 3 | FMKT $=(-S I N(A R G)-S I N(G A M) * S I N H(E X) / S H) * G A M * * K$ | FMKT | T0180 |
|  | GD TO 99 | FMKI | T0190 |
| 4 | FMKT=(-COS(ARG)-SIN(GAM)*COSH(EX)/SH)*GAM**K |  | T0200 |
| 99 | RETURN |  | 10210 |
|  | END | FMK | 10220 |
|  | FUNCTION BFVINU, 21 | BVF | 0020 |
| C*** | BESSEL FUNCTION SO.JI | BVF | 0025 |
|  | DIMENSION BF\{30) | BVF | 0030 |
|  | IF(z-4.0)200,201,201 | BVF | 0040 |
| 201 | BFV $=\operatorname{SUMM}(N \mathrm{CH}, 2)$ | BVF | 0050 |
|  | KETURN | BVF | 0060 |
| 200 | IF (2) 202,205,202 | BVF | 0070 |
| 205 | IF(:VU)204,204,203 | BVF | 0080 |
| 204 | BFV=1.0 | BVF | 0090 |
|  | RETURN | BVF | 0100 |
| 203 | BFV $=0.0$ | BVF | 0110 |
|  | RETURN | BVF | 0120 |
| 202 |  | BVF | 0130 |
|  | $E R R=.000001$ | BVF | 0140 |
|  | NCODE $=1$ | BVF | 0150 |
| 60 | BFV $=0.0$ | BVF | 0160 |
|  | $x=2.012$ | BVF | 0170 |
|  | FLG=ALOG(.5*2) | BVF | 0180 |
| 2 | $C=-1.0$ | BVF | 0190 |
| 50 | $N=N U+M$ | BVF | 0200 |
|  | $B F(N+1)=1.0$ | BVF | 0210 |
|  | $B F(N+2)=0.0$ | BVF | 0220 |
|  | SF $(\mathrm{N}+3)=0.0$ | BVF | 0230 |
|  | $A=1.0$ | BVF | 0240 |
| 53 | $C R=0.0$ | BVF | 0250 |
|  | $006 \mathrm{~J}=1, \mathrm{M}$ | BVF | 0260 |
|  | $I=N+1-J$ | B VF | 0270 |
|  | $F=1$ | BVF | 0280 |
|  | $B F(I)=F * X * A+C * C R$ | BVF | 0290 |
|  | $C R=A$ | BVF | 0300 |
| $\bigcirc$ | $A=B F(1)$ | BVF | 0310 |
|  | IF (NU) 7,7,8 | BVF | 0320 |
| 7 | $C M=1.0$ | BVF | 0330 |
|  | $C N=2.0$ | BVF | 0340 |

```
 GO TO 13 BVF 0350
 CM=1.0
 BVF 0360
 OO 9 J=1,NU
 F=J
9 CM=CM*F
10 CN=CM*(F+2.0)
13 CO TO 114,20),NCODE
14 SUM=CM*BF(NU+1)+CN*BF(NU+3)
 K=NU+5
 J=2
12 F=J
 G=NU
 CN=CN*(G+2.*F)*(G*F-1.0)/(F*(G+2.*F-2.))
 SUM=SUM+CN*BF(K)
 IF (N-K) 30,16,16
16 J=J+1
 k=k+2
 GO TO 12
BVF 0520
 J=2
 K=NU+3
19 F=J
 G=NU
 CN=CN*(G+F)*(2.*G*F-1.0)/(F*(G+F-1.))
 SUM=SUM+CN*BF(K)
 IF (N-K) 30,17,17
17 J=J+1
 K=k+1
 GO TO 19
30 F=FLG
 AM=NU
 F=AM*F
 GO TO (32,31),NCODE
31 G=X
 GC IO 33
32 G=0.0
33)}AMF=F+
 AMF=EXP(AMF)
 G = AMF/SUM
 AMR=RF(NU+1)
 BF(NU+1)=AMR*G
 ER=BF(NU+1)-BFV
 ER=ABS(ER)
 BFV=BF(NU+1)
 IF (ERR-ER) 43,34,34
43 M=M+1
 GO TO }5
34 RETURN
 END
```

        FUNCTION SUMM(NU, X) SUMMOO20
        DIMENSION GAMMA111),FREQ(31), COEFS(24),SAVE(14) SUMM0030
        COMMON GAMMA,EPY,EPX,GMM,SS,T,Q,FREQ,SAVE, COEFS,BFDR, BETA,BSQ,SOK, SUMMOO4O
    $I E M, C K, S, P I$
COMMON GAMMA,EPY,EPX,GMM,SS,T, Q,FREQ, SAVE, COEFS,BFOR, BETA,BSQ, SOK, SUMMOO4O
IEM,CK,S,PI
SUMMOOSO
$A R=4.0 / X \quad$ SUMMO060
$A R G=A R * A R$
$I N U=N U+1$
GO TO (1,100).INU
C JO TO BE COMPUTED.
$\begin{array}{ll}\text { JGTO BE COMPUTED. } \\ 1 H E T A=X-P I * 0.25 & \text { SUMMO100 } \\ & \text { SUMM0110 }\end{array}$
$I=1$
$J=7 \quad$ SUMMOL 30
SUMM0070
SUMM0090
Summoloo
SUMMOL 20
101 PN=ARG*(ARG*(ARG*(ARG*(ARG*COEFS(I)+COEFS(I+1))+COEFS(I+2))+CUEFSI
1I+3I)+COEFS (I+4)I+COEFS (I+5)
Summol40
SUMMOLSO
QN=AR*(ARG* (ARG* (ARG* (ARG* (ARG*COEFS(J) $+\operatorname{COEFS}(J+1))+\operatorname{COEFS}(J+2))$ SUMM0160
$(+\operatorname{COEFS}(J+3))+\operatorname{COEFS}(J+4))+\operatorname{COEFS}(J+5))$
SUNN $=$ SQRT (AR*0.5/PI)*(COS(THETA)*PN-SIN(THETA)*QN)
SUMMO170
SUMMO1 80
999 RETURN SUMMO190
C Jl TO BE COMPUTED. SUMMOLOO
100 THETAFX-0.75*PI SUMMO210
$\mathrm{I}=13$
SUMMO220
$I=13$
$J=19$
$J=19$
GO ro 101
SUMMO230
SUMMO240
END SUMMO250

1. Kobett, D. R., "Research on Panel Flutter," NASA CR-80 (1964).
2. Luke, Y. L., and A. D. St. John, "Supersonic Panel Flutter," WADC Technical Report 57-252 (1957).
3. Kobett, D. R., "Flutter of Nultiple Streamwise Bay Panels at Low Supersonic Mach Number," NASA CR-538 (1966).
4. Bocher, M., "Introduction to Higher Algebra," The MacMillan Company (1936).
5. Yates, J. E., "A Study of Aeroelastic (Flutter) Behavior of Slender F Flexible Wing-Body Configurations in Hypersonic Flow," Midwest Research Institute Phase Report No. 1, Contract No. NASI-2620 (1964).
6. "Handbook of Mathematical Functions," U. S. Department of Commerce publication (AMS55), p. 886 (1964).
7. Hansen, E. R., "On the Danilewski Method," J. Assn. Comput. Mach., January 1963.
8. Faddeeva, V. N., "Computational Methods of Linear Algebra," (Translated by C. D. Benster), Dover Publications, Inc., New York (1959).
9. Givens, W., "The Characteristic Value - Vector Problem," J. Assn. Comput. Mach., July, 1957.

[^0]:    * Numbers in brackets refer to the bibliography.

[^1]:    * See Appendix I for Figures 1 - 6.

[^2]:    * Coupling between spanwise modes is neglected; the mode number is arbitrary.

[^3]:    * See Appendix VIII for description of a mild restriction on admissible values for $\varepsilon_{\mathrm{y}}$.

[^4]:    * A table of $\mu$ values is defined by input data.
    ** In general, a number of computer runs will be required to completely define the boundaries.
    *** If two flutter points lie within one increment of the $\mu$ table neither will be detected. However, experience with the program has shown that this event seldom occurs when a $\mu$ table with moderate increment sizes is employed (see Fig. 2 for recommended table). Further, when it does occur it creates little difficulty because the points can be obtained, if desired, by repeating the calculation using a $\mu$ table with finer increment sizes. In most instances the repetition is unnecessary because adjacent points on the boundaries are available from calculations made using slightly different frequencies.

[^5]:    * Data for up to 4 chordwise bays can be stored on 1 tape. However, no penalty in computation time is incurred if the user chooses to generate separate tapes for each $L$ value.

[^6]:    * See discussions of the intermediate tape in Section IV and Appendix III. ** Ten modes are required here even though some are not later used.

[^7]:    * Sample data listings (Figs. $2 a, 2 b$ and 3 ) are discussed at the end of this section.

[^8]:    * The elements of the Sylvester determinant are real-valued functions of $\mu$; they do not depend on Z .

[^9]:    * In the print-out these three values of $\mu$ (and/or $1 / \mu$ ) will sometimes be identical because only six digits to the right of the decimal are printed.

[^10]:    * Note as mentioned earlier that the program symbols used for $\mu$ suggest $\alpha$ rather than $\mu$.

[^11]:    * The operations consist in similarity transformations which do not alter the characteristic polynomial.

[^12]:    SUBROUTINE HD1063(NSEQ,JK, KODE)
    HEAD0020
    COMMON GAMMA,EPY,EPX,GMM,SS,T,Q,FREQ,SAVE,COEFS,BFOR,BETA,BSR,SQK,HEADOO 30 LEM, CK, S, PI, PREAL, PIMAG,HMM, DPHI, MMAX,L,XL,SMR,SMI,EYER,EYEI, HEAD0040

