481 research outputs found

    Insights on the kinematics of the India-Eurasia collision from global geodynamic models

    Get PDF
    The Eocene India-Eurasia collision is a first order tectonic event whose nature and chronology remains controversial. We test two end-member collision scenarios using coupled global plate motion-subduction models. The first, conventional model, invokes a continental collision soon after ∼60 Ma between a maximum extent Greater India and an Andean-style Eurasian margin. The alternative scenario involves a collision between a minimum extent Greater India and a NeoTethyan back-arc at ∼60 Ma that is subsequently subducted along southern Lhasa at an Andean-style margin, culminating with continent-continent contact at ∼40 Ma. Our numerical models suggest the conventional scenario does not adequately reproduce mantle structure related to Tethyan convergence. The alternative scenario better reproduces the discrete slab volumes and their lateral and vertical distribution in the mantle, and is also supported by the distribution of ophiolites indicative of Tethyan intraoceanic subduction, magmatic gaps along southern Lhasa and a two-stage slowdown of India. Our models show a strong component of southward mantle return flow for the Tethyan region, suggesting that the common assumption of near-vertical slab sinking is an oversimplification with significant consequences for interpretations of seismic tomography in the context of subduction reference frames

    Growing Environmental Activists: Developing Environmental Agency and Engagement Through Children’s Fiction.

    Get PDF
    We explore how story has the potential to encourage environmental engagement and a sense of agency provided that critical discussion takes place. We illuminate this with reference to the philosophies of John Macmurray on personal agency and social relations; of John Dewey on the primacy of experience for philosophy; and of Paul Ricoeur on hermeneutics, dialogue, dialectics and narrative. We view the use of fiction for environmental understanding as hermeneutic, a form of conceptualising place which interprets experience and perception. The four writers for young people discussed are Ernest Thompson Seton, Kenneth Grahame, Michelle Paver and Philip Pullman. We develop the concept of critical dialogue, and link this to Crick's demand for active democratic citizenship. We illustrate the educational potential for environmental discussions based on literature leading to deeper understanding of place and environment, encouraging the belief in young people that they can be and become agents for change. We develop from Zimbardo the key concept of heroic resister to encourage young people to overcome peer pressure. We conclude with a call to develop a greater awareness of the potential of fiction for learning, and for writers to produce more focused stories engaging with environmental responsibility and activism

    The reluctant polymorph: investigation into the effect of self-association on the solvent mediated phase transformation and nucleation of theophylline

    Get PDF
    Little is known concerning the pathway of the crystallization of the thermodynamically stable polymorph of theophylline, form IV. Here we study the reasons why the thermodynamically stable theophylline form IV can be obtained only by slow, solvent mediated phase transformation (SMPT) in specific solvents, and whether the presence of prenucleation aggregates affect the polymorphic outcome. Solution concentration, polymorphic composition and morphology were monitored over time during the transformation from form II to form IV in several solvents. NMR and FTIR spectroscopy were used to detect prenucleation molecular aggregates present in the solutions. It was determined that theophylline self-associates in solvents which are good H-bond donors and the presence of these aggregates hinder the nucleation and phase transformation. SMPT from form II to form IV is a nucleation-growth controlled polymorphic transformation, nucleation is most likely homogenous, and form IV crystals grow along the (001) plane, forming plate-like crystals

    Modeling the Miocene Climatic Optimum: Ocean Circulation

    Get PDF
    Ocean circulation is investigated using the Community Climate System Model 3 (CCSM3) forced with early to middle Miocene (∼20–14 Ma) topography, bathymetry, vegetation and modern CO2. Significant bottom water formation is modeled in the Weddell Sea along with intermediate North Component Water formation in the North Atlantic. This is attributed primarily to stronger- and weaker-than-modern convective preconditioning in the Weddell and Labrador Seas, respectively. Global meridional overturning and gyre circulation is weaker in the Miocene due to weaker midlatitude westerlies in the southern hemisphere, caused by lowering of the meridional surface temperature gradient, in addition to regional influences on convection. Subsurface temperatures in the Miocene are significantly higher in the far North Atlantic, Greenland-Norwegian Seas and Arctic basin compared to the present. Ocean heat transport is symmetrical about the equator and resembles that simulated for late Cretaceous and early Cenozoic climates, suggesting the northern hemisphere dominated ocean heat transport active today developed after the middle Miocene. Simulated deep water warming in the Miocene is more than an order of magnitude lower than indicated by proxies. This discrepancy is not reconciled by higher CO2 due to the persistence of sea-ice at sites of deep water formation. This suggests that either the CCSM3 is insufficiently sensitive to Miocene boundary conditions, greater greenhouse forcing existed than is currently reconstructed, or that proxy records of warming are exaggerated. Given the diversity of global Miocene proxy records and their near-unanimous estimate of a significantly warmer Earth, the first two options are more likely

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    Circum-Arctic mantle structure and long-wavelength topography since the Jurassic

    Get PDF
    The circum-Arctic is one of the most tectonically complex regions of the world, shaped by a history of ocean basin opening and closure since the Early Jurassic. The region is characterized by contemporaneous large-scale Cenozoic exhumation extending from Alaska to the Atlantic, but its driving force is unknown. We show that the mantle flow associated with subducted slabs of the South Anuyi, Mongol-Okhotsk, and Panthalassa oceans have imparted long-wavelength deflection on overriding plates. We identify the Jurassic-Cretaceous South Anuyi slab under present-day Greenland in seismic tomography and numerical mantle flow models. Under North America, we propose the “Farallon” slab results from Andean-style ocean-continent convergence around ~30°N and from a combination of ocean-continent and intraoceanic subduction north of 50°N. We compute circum-Arctic dynamic topography through time from subduction-driven convection models and find that slabs have imparted on average <1–16 m/Myr of dynamic subsidence across the region from at least 170 Ma to ~50 Ma. With the exception of Siberia, the main phase of circum-Arctic dynamic subsidence has been followed either by slowed subsidence or by uplift of <1–6 m/Myr on average to present day. Comparing these results to geological inferences suggest that subduction-driven dynamic topography can account for rapid Middle to Late Jurassic subsidence in the Slave Craton and North Slope (respectively, <15 and 21 m/Myr, between 170 and 130 Ma) and for dynamic subsidence (<7 m/Myr, ~170–50 Ma) followed by dynamic uplift (<6 m/Myr since 50 Ma) of the Barents Sea region. Combining detailed kinematic reconstructions with geodynamic modeling and key geological observations constitutes a powerful tool to investigate the origin of vertical motion in remote regions

    Oceanic plateau subduction beneath North America and its geological and geophysical implications

    Get PDF
    We use two independent approaches, inverse models of mantle convection and plate reconstructions, to predict the temporal and spatial association of the Laramide events to subduction of oceanic plateaus. Inverse convection models, consistent with vertical motions in western US, recover two prominent anomalies on the Farallon plate during the Late Cretaceous that coincide with paleogeographically restored Shatsky and Hess conjugate plateaus when they collided with North America. The distributed deformation of the Laramide orogeny closely tracked the passage of the Shatsky conjugate massif, suggesting that subduction of this plateau dominated the distinctive geology of the western United States. Subduction of the Hess conjugate corresponds to termination of a Latest Cretaceous arc magmatism and intense crustal shortening in Early Paleogene in northwest Mexico. At present, conjugates of the Shatsky and Hess plateaus are located beneath the east coast of North America, and we predict that +4% seismic anomalies in P and S velocities are associated with the remnant plateaus with sharp lateral boundaries detectable by the USArray seismic experiment. Flat subduction of the Shatsky conjugate caused drastic subsidence/uplift and tilt of the Colorado Plateau (CP). From the inverse convection calculations, we find that with the arrival of the flat slab, dynamic subsidence starts at the southwestern CP and reaches a maximum at ~86 Ma. Two stages of uplift follow the removal of the Farallon slab: one in Latest Cretaceous and the other in Eocene with a cumulative uplift of ~1.2 km. The southwestern plateau reaches a high dynamic topography in the Eocene which is sustained to the present. Both the descent of the slab and buoyant upwelling may have contributed to late Cenozoic plateau uplift. The CP tilts downward to the NE before the Oligocene, caused by NE trending subduction of the Farallon slab. The NE tilt diminishes and switches to a SW tilt during the Miocene when buoyant mantle upwellings occur

    Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps

    Get PDF
    Assessing the size of a former ocean of which only remnants are found in mountain belts is challenging but crucial to understanding subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont–Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of the Western Mediterranean–Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modeling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e., ages of syn-rift sediments, rift-related fault activity, and mafic rocks) and shows that, between Europe and northern Adria, the PL Basin opened in four stages: (1) rifting of the proximal continental margin in the Early Jurassic (200–180 Ma), (2) hyper-extension of the distal margin in the Early to Middle Jurassic (180–165 Ma), (3) ocean–continent transition (OCT) formation with mantle exhumation and MORB-type magmatism in the Middle–Late Jurassic (165–154 Ma), and (4) breakup and mature oceanic spreading mostly in the Late Jurassic (154–145 Ma). Spreading was slow to ultra-slow (max. 22 mm yr−1, full rate) and decreased to ∼5 mm yr−1 after 145 Ma while completely ceasing at about 130 Ma due to the motion of Iberia relative to Europe during the opening of the North Atlantic. The final width of the PL mature (“true”) oceanic crust reached a maximum of 250 km along a NW–SE transect between Europe and northwestern Adria. Plate convergence along that same transect has reached 680 km since 84 Ma (420 km between 84–35 Ma, 260 km between 35–0 Ma), which greatly exceeds the width of the ocean. We suggest that at least 63 % of the subducted and accreted material was highly thinned continental lithosphere and most of the Alpine Tethys units exhumed today derived from OCT zones. Our work highlights the significant proportion of distal rifted continental margins involved in subduction and exhumation processes and provides quantitative estimates for future geodynamic modeling and a better understanding of the Alpine Orogeny

    Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching

    Get PDF
    The relief of the South Atlantic is characterized by elevated passive continental margins along southern Africa and eastern Brazil, and by the bathymetric asymmetry of the southern oceanic basin where the western flank is much deeper than the eastern flank. We investigate the origin of these topographic features in the present and over time since the Jurassic with a model of global mantle flow and lithospheric deformation. The model progressively assimilates plate kinematics, plate boundaries and lithospheric age derived from global tectonic reconstructions with deforming plates, and predicts the evolution of mantle temperature, continental crustal thickness, long-wavelength dynamic topography, and isostatic topography. Mantle viscosity and the kinematics of the opening of the South Atlantic are adjustable parameters in thirteen model cases. Model predictions are compared to observables both for the present-day and in the past. Present-day predictions are compared to topography, mantle tomography, and an estimate of residual topography. Predictions for the past are compared to tectonic subsidence from backstripped borehole data along the South American passive margin, and to dynamic uplift as constrained by thermochronology in southern Africa. Comparison between model predictions and observations suggests that the first-order features of the topography of the South Atlantic are due to long-wavelength dynamic topography, rather than to asthenospheric processes. The uplift of southern Africa is best reproduced with a lower mantle that is at least 40 times more viscous than the upper mantle
    corecore