4,914 research outputs found

    Negative Interactions in Irreversible Self-Assembly

    Full text link
    This paper explores the use of negative (i.e., repulsive) interaction the abstract Tile Assembly Model defined by Winfree. Winfree postulated negative interactions to be physically plausible in his Ph.D. thesis, and Reif, Sahu, and Yin explored their power in the context of reversible attachment operations. We explore the power of negative interactions with irreversible attachments, and we achieve two main results. Our first result is an impossibility theorem: after t steps of assembly, Omega(t) tiles will be forever bound to an assembly, unable to detach. Thus negative glue strengths do not afford unlimited power to reuse tiles. Our second result is a positive one: we construct a set of tiles that can simulate a Turing machine with space bound s and time bound t, while ensuring that no intermediate assembly grows larger than O(s), rather than O(s * t) as required by the standard Turing machine simulation with tiles

    An information-bearing seed for nucleating algorithmic self-assembly

    Get PDF
    Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is 17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication

    Loneliness, Depression, and Inflammation: Evidence from the Multi-Ethnic Study of Atherosclerosis

    Get PDF
    Objective Both objective and subjective aspects of social isolation have been associated with alterations in immune markers relevant to multiple chronic diseases among older adults. However, these associations may be confounded by health status, and it is unclear whether these social factors are associated with immune functioning among relatively healthy adults. The goal of this study was to examine the associations between perceived loneliness and circulating levels of inflammatory markers among a diverse sample of adults. Methods Data come from a subset of the Multi-Ethnic Study of Atherosclerosis (n = 441). Loneliness was measured by three items derived from the UCLA Loneliness Scale. The association between loneliness and C-reactive protein (CRP) and fibrinogen was assessed using multivariable linear regression analyses. Models were adjusted for demographic and health characteristics. Results Approximately 50% of participants reported that they hardly ever felt lonely and 17.2% felt highly lonely. Individuals who were unmarried/unpartnered or with higher depressive symptoms were more likely to report being highly lonely. There was no relationship between perceived loneliness and ln(CRP) (β = -0.051, p = 0.239) adjusting for demographic and health characteristics. Loneliness was inversely associated with ln(fibrinogen) (β = -0.091, p = 0.040), although the absolute magnitude of this relationship was small. Conclusion These results indicate that loneliness is not positively associated with fibrinogen or CRP among relatively healthy middle-aged adults

    Robust self-replication of combinatorial information via crystal growth and scission

    Get PDF
    Understanding how a simple chemical system can accurately replicate combinatorial information, such as a sequence, is an important question for both the study of life in the universe and for the development of evolutionary molecular design techniques. During biological sequence replication, a nucleic acid polymer serves as a template for the enzyme-catalyzed assembly of a complementary sequence. Enzymes then separate the template and complement before the next round of replication. Attempts to understand how replication could occur more simply, such as without enzymes, have largely focused on developing minimal versions of this replication process. Here we describe how a different mechanism, crystal growth and scission, can accurately replicate chemical sequences without enzymes. Crystal growth propagates a sequence of bits while mechanically-induced scission creates new growth fronts. Together, these processes exponentially increase the number of crystal sequences. In the system we describe, sequences are arrangements of DNA tile monomers within ribbon-shaped crystals. 99.98% of bits are copied correctly and 78% of 4-bit sequences are correct after two generations; roughly 40 sequence copies are made per growth front per generation. In principle, this process is accurate enough for 1,000-fold replication of 4-bit sequences with 50% yield, replication of longer sequences, and Darwinian evolution. We thus demonstrate that neither enzymes nor covalent bond formation are required for robust chemical sequence replication. The form of the replicated information is also compatible with the replication and evolution of a wide class of materials with precise nanoscale geometry such as plasmonic nanostructures or heterogeneous protein assemblies

    The Injection System of the INFN-SuperB Factory Project: Preliminary Design

    No full text
    THPEA007International audienceThe ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfill the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electrons and positrons in both HER and LER rings is necessary to keep the average luminosity at a high level. Polarized electrons are required for experiments and must be delivered by the injection system, due to the beam lifetime shorter than the polarization build-up: they will be produced by means of a SLAC-SLC polarized gun. One or two 1 GeV damping rings are used to reduce e+ and e- emittances. Two schemes for positron production are under study, one with electron-positron conversion at low energy (<1 Gev), the second at 6 GeV with a recirculation line to bring the positrons back to the damping ring. Acceleration through the Linac is provided by a S-band RF system made of traveling wave, room temperature accelerating structures. An option to use the C-band technology is also presented
    corecore