28 research outputs found

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Computational modelling of wound healing insights to develop new treatments

    Get PDF
    About 1% of the population will suffer a severe wound during their life. Thus, it is really important to develop new techniques in order to properly treat these injuries due to the high socioeconomically impact they suppose. Skin substitutes and pressure based therapies are currently the most promising techniques to heal these injuries. Nevertheless, we are still far from finding a definitive skin substitute for the treatment of all chronic wounds. As a first step in developing new tissue engineering tools and treatment techniques for wound healing, in silico models could help in understanding the mechanisms and factors implicated in wound healing. Here, we review mathematical models of wound healing. These models include different tissue and cell types involved in healing, as well as biochemical and mechanical factors which determine this process. Special attention is paid to the contraction mechanism of cells as an answer to the tissue mechanical state. Other cell processes such as differentiation and proliferation are also included in the models together with extracellular matrix production. The results obtained show the dependency of the success of wound healing on tissue composition and the importance of the different biomechanical and biochemical factors. This could help to individuate the adequate concentration of growth factors to accelerate healing and also the best mechanical properties of the new skin substitute depending on the wound location in the body and its size and shape. Thus, the feedback loop of computational models, experimental works and tissue engineering could help to identify the key features in the design of new treatments to heal severe wounds

    The Kunitz-Like Modulatory Protein Haemangin Is Vital for Hard Tick Blood-Feeding Success

    Get PDF
    Ticks are serious haematophagus arthropod pests and are only second to mosquitoes as vectors of diseases of humans and animals. The salivary glands of the slower feeding hard ticks such as Haemaphysalis longicornis are a rich source of bioactive molecules and are critical to their biologic success, yet distinct molecules that help prolong parasitism on robust mammalian hosts and achieve blood-meals remain unidentified. Here, we report on the molecular and biochemical features and precise functions of a novel Kunitz inhibitor from H. longicornis salivary glands, termed Haemangin, in the modulation of angiogenesis and in persistent blood-feeding. Haemangin was shown to disrupt angiogenesis and wound healing via inhibition of vascular endothelial cell proliferation and induction of apoptosis. Further, this compound potently inactivated trypsin, chymotrypsin, and plasmin, indicating its antiproteolytic potential on angiogenic cascades. Analysis of Haemangin-specific gene expression kinetics at different blood-feeding stages of adult ticks revealed a dramatic up-regulation prior to complete feeding, which appears to be functionally linked to the acquisition of blood-meals. Notably, disruption of Haemangin-specific mRNA by a reverse genetic tool significantly diminished engorgement of adult H. longicornis, while the knock-down ticks failed to impair angiogenesis in vivo. To our knowledge, we have provided the first insights into transcriptional responses of human microvascular endothelial cells to Haemangin. DNA microarray data revealed that Haemangin altered the expression of 3,267 genes, including those of angiogenic significance, further substantiating the antiangiogenic function of Haemangin. We establish the vital roles of Haemangin in the hard tick blood-feeding process. Moreover, our results provide novel insights into the blood-feeding strategies that enable hard ticks to persistently feed and ensure full blood-meals through the modulation of angiogenesis and wound healing processes

    Tumor Angiogenesis and Vascular Patterning: A Mathematical Model

    Get PDF
    Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools

    A Three Species Model to Simulate Application of Hyperbaric Oxygen Therapy to Chronic Wounds

    Get PDF
    Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the cost-effectiveness of this therapy

    Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading

    Get PDF
    The aim was to assess the role of the composition changes in the pericellular matrix (PCM) for the chondrocyte deformation. For that, a three-dimensional finite element model with depth-dependent collagen density, fluid fraction, fixed charge density and collagen architecture, including parallel planes representing the split-lines, was created to model the extracellular matrix (ECM). The PCM was constructed similarly as the ECM, but the collagen fibrils were oriented parallel to the chondrocyte surfaces. The chondrocytes were modelled as poroelastic with swelling properties. Deformation behaviour of the cells was studied under 15% static compression. Due to the depth-dependent structure and composition of cartilage, axial cell strains were highly depth-dependent. An increase in the collagen content and fluid fraction in the PCMs increased the lateral cell strains, while an increase in the fixed charge density induced an inverse behaviour. Axial cell strains were only slightly affected by the changes in PCM composition. We conclude that the PCM composition plays a significant role in the deformation behaviour of chondrocytes, possibly modulating cartilage development, adaptation and degeneration. The development of cartilage repair materials could benefit from this information

    Module-based multiscale simulation of angiogenesis in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.</p> <p>Results</p> <p>We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis.</p> <p>Conclusions</p> <p>This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions.</p

    In silico design of treatment strategies in wound healing and bone fracture healing

    Full text link
    Wound and bone fracture healing are natural repair processes initiated by trauma. Over the last decade, many mathematical models have been established to investigate the healing processes in silico, in addition to ongoing experimental work. In recent days, the focus of the mathematical models has shifted from simulation of the healing process towards simulation of the impaired healing process and the in silico design of treatment strategies. This review describes the most important causes of failure of the wound and bone fracture healing processes and the experimental models and methods used to investigate and treat these impaired healing cases. Furthermore, the mathematical models that are described address these impaired healing cases and investigate various therapeutic scenarios in silico. Examples are provided to illustrate the potential of these in silico experiments. Finally, limitations of the models and the need for and ability of these models to capture patient specificity and variability are discussed
    corecore