116 research outputs found

    Reoxidation dynamics of highly dispersed VO<sub>x</sub> species supported on Îł-alumina

    No full text
    The VOx/γ-Al2O3 catalyst VA-200, which was introduced in a previous article, is further characterized by XPS and visible Raman spectroscopy. The reoxidation of highly dispersed VOx species with gas phase oxygen is investigated in detail and is described by an empirical kinetic model. It is observed that the reoxidation of reduced VOx/γ-Al2O3 catalyst is strongly affected by the presence of water. The proposed kinetic model includes a distinct coverage of VOx species with water or hydroxyl groups in the investigated temperature range of 479–712 K. Hydrated surface species are oxidized under release of water. Best fits of the experimental data can be achieved with first order rate laws with respect to oxygen concentration. Experiments are performed in an ideally mixed Berty-type reactor using oxygen step-marking over the reduced catalyst. The evolution of oxygen concentration using the kinetic model is in agreement with the experimentally observed behaviour. The signal of water released during the reaction can be modeled only qualitatively, which (presumably) stems from its sorption behaviour on the acidic alumina support. The oxidation of VOx species furthermore depends on the reaction temperature. The oxidation of V+III to V+V cannot be completely achieved at temperatures below 673 K. However, the activation energy of this reaction is low, as suggested by the absence of strong variations of the response shapes with respect to temperature

    In situ surface coverage analysis of RuO<sub>2</sub>-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis

    Get PDF
    In heterogeneous catalysis, rates with Arrhenius-like temperature dependence are ubiquitous. Compensation phenomena, which arise from the linear correlation between the apparent activation energy and the logarithm of the apparent pre-exponential factor, are also common. Here, we study the origin of compensation and find a similar dependence on the rate-limiting surface coverage term for each Arrhenius parameter. This result is derived from an experimental determination of the surface coverage of oxygen and chlorine species using temporal analysis of products and prompt gamma activation analysis during HCl oxidation to Cl2 on a RuO2 catalyst. It is also substantiated by theory. We find that compensation phenomena appear when the effect on the apparent activation energy caused by changes in surface coverage is balanced out by the entropic configuration contributions of the surface. This result sets a new paradigm in understanding the interplay of compensation effects with the kinetics of heterogeneously catalysed processes

    Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions

    Get PDF
    We recently introduced a new method to synthesize an active and stable Pt catalyst, namely thermo-destabilization of microemulsions (see R. Y. Parapat, V. Parwoto, M. Schwarze, B. Zhang, D. S. Su and R. Schomäcker, J. Mater. Chem., 2012, 22 (23), 11605–11614). We are able to produce Pt nanocrystals with a small size (2.5 nm) of an isotropic structure i.e. truncated octahedral and deposit them well on support materials. Although we have obtained good results, the performance of the catalyst still needed to be improved and optimized. We followed the strategy to retain the small size but change the shape to an anisotropic structure of Pt nanocrystals which produces more active sites by means of a weaker reducing agent. We found that our catalysts are more active than those we reported before and even show the potential to be applied in a challenging reaction such as hydrogenation of levulinic acid

    Steam reforming of methanol over copper-containing catalysts: influence of support material on microkinetics

    Get PDF
    Steam reforming of methanol (SRM) was investigated over copper-containing catalysts supported on four different oxides and mixed oxides: Cu/ZnO/Al2O3, Cu/ZrO2/CeO2, Cu/SiO2 and Cu/Cr2O3/Fe2O3. After observing slight differences in the way of catalyst aging and experimental exclusion of mass transport limitation effects, a detailed kinetic study was carried out at 493 K. The dependence of the reaction rate on the molar ratio of methanol and water was determined as well as the influence of addition of inert nitrogen and the main reaction products hydrogen and carbon dioxide to the reactant mixture. Although there were remarkable differences in the catalytic activity of the samples, the main mechanistic steps reflected in the rate law appeared to be similar for all catalysts. The reaction rate is mainly determined by the methanol partial pressure, whereas water is not involved in the rate determining step, except over Cu/Cr2O3/Fe2O3, where several differences in the chemistry were observed. Hydrogen and carbon dioxide were found to inhibit the reaction. These results were confirmed by a DRIFTS study at 493 K using an equimolar reactant mixture and an excess of 4:1 of water and methanol, respectively. The same surface species could be identified on each catalyst but neither kinetic modelling nor the DRIFTS spectra could give a clear answer if the reaction pathway occurs via a dioxomethylene or a methyl formate species as intermediate. Similar activation energies of SRM confirm the assumption, that the surface chemistry of SRM over copper-based systems is independent of the catalyst support material

    Oxygen Activation in Oxidative Coupling of Methane on Calcium Oxide

    Get PDF
    A pulsed isotope exchange technique was applied to study the oxygen scrambling activity of polycrystalline calcium oxide under temperatures and pressures relevant for the oxidative coupling of methane (OCM). Oxygen exchange was observed above 400 °C. The onset was attributed to the removal of impurities on the catalyst surface. By trapping impurities in the gas feed, the scrambling could already be observed at room temperature. An activation energy of 80 kJ/mol was determined for the oxygen scrambling of O2 on the surface of polycrystalline CaO powder in absence of other gases. Presence of water and carbon dioxide shift the onset of the reaction to higher temperatures and increase the activation energy significantly to 110 and 150 kJ/mol, respectively. The OCM activity could be directly linked to the oxygen scrambling activity of the material in pulsed OCM operation. It is proposed that the same sites are responsible for oxygen scrambling and OCM reaction and that the rate is dictated by desorption of CO2 and H2O. The high reaction temperatures in OCM in case of CaO are only required to regenerate the active sites, which may apply to basic OCM catalysts in general. In situ Raman and thermogravimetric experiments verified the formation of a bulk calcite phase below 750 °C, which is inactive in OCM and oxygen scrambling. Above 750 °C no surface oxygen species or adsorbates were found by Raman spectroscopy suggesting that only surface defects are responsible for catalytic activity of CaO

    The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition

    Get PDF
    A zirconium oxynitride catalyst was used for the decomposition of ammonia to hydrogen and nitrogen. The onset of catalytic activity at 550 °C coincided with the onset of nitrogen ion mobility in the material and a phase change from the initial β′ phase ( Zr7O11N2) to the nitrogen-rich β″ ZrON phase ( Zr7O9,5N3). No hydrazine formation during an extended time on stream was detectable. Moreover, the onset of activity was also correlated to a rapid change in the electronic structure of the surface accompanying formation of the more active β″ ZrON phase. The results presented here show for the first time a direct correlation among the onset of ion conductivity as a bulk property, a modified electronic structure of the surface, and the catalytic performance of a heterogeneous catalyst

    ODH @ CNTs – Metal-free Catalytic Alkane Activation

    Get PDF
    The conversion of alkanes into higher valued olefins by oxidative dehydrogenation (ODH) using supported transition metal oxides is a topic of intense research, however, the yield of alkenes is still too low for industrial application. A completely innovative approach is the metal-free carbon mediated ODH catalysis, which is so far predominantly investigated on the substrate ethylbenzene. After surface modification, commercial multiwalled carbon nano-tubes (CNTs) can be used as stable catalysts also for the activation of alkanes (C2–C4), en-abling alkene yields comparable with supported vanadia catalysts but avoiding the use of toxic transition metal oxides

    Pulsed-laser studies on the free-radical polymerization kinetics of styrene in microemulsion

    Get PDF
    A mean value of 339 L mol-1 s-1 was obtained for the propagation const. derived from pulsed-laser polymn. (PLP) of styrene in aq. AOT microemulsions. For accurate detns., simulations accounting for the esp. high radical concn. after the laser pulse in microemulsions were recommended. PLP with microemulsions apparently permitted specific kinetic aspects such as transfer to monomer and influence of droplet size on bimol. termination to be studied in detai
    • …
    corecore