145 research outputs found

    A Comparison of Global Estimates of Marine Primary Production From Ocean Color

    Get PDF
    The third primary production algorithm round robin (PPARR3) compares output from 24 models that estimate depth-integrated primary production from satellite measurements of ocean color, as well as seven general circulation models (GCMs) coupled with ecosystem or biogeochemical models. Here we compare the global primary production fields corresponding to eight months of 1998 and 1999 as estimated from common input fields of photosynthetically-available radiation (PAR), sea-surface temperature (SST), mixed-layer depth, and chlorophyll concentration. We also quantify the sensitivity of the ocean-color-based models to perturbations in their input variables. The pair-wise correlation between ocean-color models was used to cluster them into groups or related output, which reflect the regions and environmental conditions under which they respond differently. The groups do not follow model complexity with regards to wavelength or depth dependence, though they are related to the manner in which temperature is used to parameterize photosynthesis. Global average PP varies by a factor of two between models. The models diverged the most for the Southern Ocean, SST under 10 degrees C, and chlorophyll concentration exceeding 1 mg Chl m-3. Based on the conditions under which the model results diverge most, we conclude that current ocean-color-based models are challenged by high-nutrient low-chlorophyll conditions, and extreme temperatures or chlorophyll concentrations. The GCM-based models predict comparable primary production to those based on ocean color: they estimate higher values in the Southern Ocean, at low SST, and in the equatorial band, while they estimate lower values in eutrophic regions (probably because the area of high chlorophyll concentrations is smaller in the GCMs). Further progress in primary production modeling requires improved understanding of the effect of temperature on photosynthesis and better parameterization of the maximum photosynthetic rate

    Nested-grid simulation of mercury over North America

    Get PDF
    We have developed a new nested-grid mercury (Hg) simulation over North America with a 1/2° latitude by 2/3° longitude horizontal resolution employing the GEOS-Chem global chemical transport model. Emissions, chemistry, deposition, and meteorology are self-consistent between the global and nested domains. Compared to the global model (4° latitude by 5° longitude), the nested model shows improved skill at capturing the high spatial and temporal variability of Hg wet deposition over North America observed by the Mercury Deposition Network (MDN) in 2008–2009. The nested simulation resolves features such as higher deposition due to orographic precipitation, land/ocean contrast and and predicts more efficient convective rain scavenging of Hg over the southeast United States. However, the nested model overestimates Hg wet deposition over the Ohio River Valley region (ORV) by 27%. We modify anthropogenic emission speciation profiles in the US EPA National Emission Inventory (NEI) to account for the rapid in-plume reduction of reactive to elemental Hg (IPR simulation). This leads to a decrease in the model bias to −2.3% over the ORV region. Over the contiguous US, the correlation coefficient (<i>r</i>) between MDN observations and our IPR simulation increases from 0.60 to 0.78. The IPR nested simulation generally reproduces the seasonal cycle in surface concentrations of speciated Hg from the Atmospheric Mercury Network (AMNet) and Canadian Atmospheric Mercury Network (CAMNet). In the IPR simulation, annual mean gaseous and particulate-bound Hg(II) are within 140% and 11% of observations, respectively. In contrast, the simulation with unmodified anthropogenic Hg speciation profiles overestimates these observations by factors of 4 and 2 for gaseous and particulate-bound Hg(II), respectively. The nested model shows improved skill at capturing the horizontal variability of Hg observed over California during the ARCTAS aircraft campaign. The nested model suggests that North American anthropogenic emissions account for 10–22% of Hg wet deposition flux over the US, depending on the anthropogenic emissions speciation profile assumed. The modeled percent contribution can be as high as 60% near large point sources in ORV. Our results indicate that the North American anthropogenic contribution to dry deposition is 13–20%

    Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial

    Get PDF
    Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756

    Endotoxemia Is Associated with Altered Innate and Adaptive Immune Responses in Untreated HIV-1 Infected Individuals

    Get PDF
    BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies) and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10) with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC) from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA) were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART), 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our results suggest that microbial translocation may be associated with innate and adaptive immune dysfunction in untreated HIV infection

    Systematic review of the epidemiological evidence comparing lung cancer risk in smokers of mentholated and unmentholated cigarettes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>US mentholated cigarette sales have increased considerably over 50 years. Preference for mentholated cigarettes is markedly higher in Black people. While menthol itself is not genotoxic or carcinogenic, its acute respiratory effects might affect inhalation of cigarette smoke. This possibility seems consistent with the higher lung cancer risk in Black men, despite Black people smoking less and starting smoking later than White people. Despite experimental data suggesting similar carcinogenicity of mentholated and non-mentholated cigarettes, the lack of convincing evidence that mentholation increases puffing, inhalation or smoke uptake, and the similarity of lung cancer rates in Black and White females, a review of cigarette mentholation and lung cancer is timely given current regulatory interest in the topic.</p> <p>Methods</p> <p>Epidemiological studies comparing lung cancer risk in mentholated and non-mentholated cigarette smokers were identified from MedLine and other sources. Study details were extracted and strengths and weaknesses assessed. Relative risk estimates were extracted, or derived, for ever mentholated use and for long-term use, overall and by gender, race, and current/ever smoking, and meta-analyses conducted.</p> <p>Results</p> <p>Eight generally good quality studies were identified, with valid cases and controls, and appropriate adjustment for age, gender, race and smoking. The studies afforded good power to detect possible effects. However, only one study presented results by histological type, none adjusted for occupation or diet, and some provided no results by length of mentholated cigarette use.</p> <p>The data do not suggest any effect of mentholation on lung cancer risk. Adjusted relative risk estimates for ever use vary from 0.81 to 1.12, giving a combined estimate of 0.93 (95% confidence interval 0.84-1.02, n = 8), with no increase in males (1.01, 0.84-1.22, n = 5), females (0.80, 0.67-0.95, n = 5), White people (0.87, 0.75-1.03, n = 4) or Black people (0.90, 0.73-1.10, n = 4). Estimates for current and ever smokers are similar. The combined estimate for long-term use (0.95, 0.80-1.13, n = 4) again suggests no effect of mentholation.</p> <p>Conclusion</p> <p>Higher lung cancer rates in Black males cannot be due to their greater preference for mentholated cigarettes. While some study weaknesses exist, the epidemiological evidence is consistent with mentholation having no effect on the lung carcinogenicity of cigarettes.</p
    corecore