318 research outputs found

    Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra

    Full text link
    We study the partially asymmetric exclusion process with open boundaries. We generalise the matrix approach previously used to solve the special case of total asymmetry and derive exact expressions for the partition sum and currents valid for all values of the asymmetry parameter q. Due to the relationship between the matrix algebra and the q-deformed quantum harmonic oscillator algebra we find that q-Hermite polynomials, along with their orthogonality properties and generating functions, are of great utility. We employ two distinct sets of q-Hermite polynomials, one for q1. It turns out that these correspond to two distinct regimes: the previously studied case of forward bias (q1) where the boundaries support a current opposite in direction to the bulk bias. For the forward bias case we confirm the previously proposed phase diagram whereas the case of reverse bias produces a new phase in which the current decreases exponentially with system size.Comment: 27 pages LaTeX2e, 3 figures, includes new references and further comparison with related work. To appear in J. Phys.

    Criterion for phase separation in one-dimensional driven systems

    Get PDF
    A general criterion for the existence of phase separation in driven one-dimensional systems is proposed. It is suggested that phase separation is related to the size dependence of the steady-state currents of domains in the system. A quantitative criterion for the existence of phase separation is conjectured using a correspondence made between driven diffusive models and zero-range processes. Several driven diffusive models are discussed in light of the conjecture

    Construction of a matrix product stationary state from solutions of finite size system

    Full text link
    Stationary states of stochastic models, which have NN states per site, in matrix product form are considered. First we give a necessary condition for the existence of a finite MM-dimensional matrix product state for any N,M{N,M}. Second, we give a method to construct the matrices from the stationary states of small size system when the above condition and N≤MN\le M are satisfied. Third, the method by which one can check that the obtained matrices are valid for any system size is presented for the case where M=NM=N is satisfied. The application of our methods is explained using three examples: the asymmetric exclusion process, a model studied in [F. H. Jafarpour: J. Phys. A: Math. Gen. 36 (2003) 7497] and a hybrid of both of the models.Comment: 22 pages, no figure. Major changes: sec.3 was shortened; the list of references were changed. This is the final version, which will appear in J.Phys.

    Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques

    Full text link
    The studies of fluctuations of the one-dimensional Kardar-Parisi-Zhang universality class using the techniques from random matrix theory are reviewed from the point of view of the asymmetric simple exclusion process. We explain the basics of random matrix techniques, the connections to the polynuclear growth models and a method using the Green's function.Comment: 41 pages, 10 figures, minor corrections, references adde

    One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle

    Full text link
    The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process on a ring is considered. The current of the ordinary particles, the speed of the defect particle and the density profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identified. As a byproduct, the average and the variance of the particle density of the one-dimensional partially asymmetric simple exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur

    Bethe ansatz solution of zero-range process with nonuniform stationary state

    Full text link
    The eigenfunctions and eigenvalues of the master-equation for zero range process with totally asymmetric dynamics on a ring are found exactly using the Bethe ansatz weighted with the stationary weights of particle configurations. The Bethe ansatz applicability requires the rates of hopping of particles out of a site to be the qq-numbers [n]q[n]_q. This is a generalization of the rates of hopping of noninteracting particles equal to the occupation number nn of a site of departure. The noninteracting case can be restored in the limit q→1q\to 1. The limiting cases of the model for q=0,∞q=0,\infty correspond to the totally asymmetric exclusion process, and the drop-push model respectively. We analyze the partition function of the model and apply the Bethe ansatz to evaluate the generating function of the total distance travelled by particles at large time in the scaling limit. In case of non-zero interaction, q≠1q \ne 1, the generating function has the universal scaling form specific for the Kardar-Parizi-Zhang universality class.Comment: 7 pages, Revtex4, mistypes correcte

    Density Profile of the One-Dimensional Partially Asymmetric Simple Exclusion Process with Open Boundaries

    Full text link
    The one-dimensional partially asymmetric simple exclusion process with open boundaries is considered. The stationary state, which is known to be constructed in a matrix product form, is studied by applying the theory of q-orthogonal polynomials. Using a formula of the q-Hermite polynomials, the average density profile is computed in the thermodynamic limit. The phase diagram for the correlation length, which was conjectured in the previous work[J. Phys. A {\bf 32} (1999) 7109], is confirmed.Comment: 24 pages, 6 figure

    Will jams get worse when slow cars move over?

    Full text link
    Motivated by an analogy with traffic, we simulate two species of particles (`vehicles'), moving stochastically in opposite directions on a two-lane ring road. Each species prefers one lane over the other, controlled by a parameter 0≤b≤10 \leq b \leq 1 such that b=0b=0 corresponds to random lane choice and b=1b=1 to perfect `laning'. We find that the system displays one large cluster (`jam') whose size increases with bb, contrary to intuition. Even more remarkably, the lane `charge' (a measure for the number of particles in their preferred lane) exhibits a region of negative response: even though vehicles experience a stronger preference for the `right' lane, more of them find themselves in the `wrong' one! For bb very close to 1, a sharp transition restores a homogeneous state. Various characteristics of the system are computed analytically, in good agreement with simulation data.Comment: 7 pages, 3 figures; to appear in Europhysics Letters (2005

    Nonequilibrium stationary states and equilibrium models with long range interactions

    Full text link
    It was recently suggested by Blythe and Evans that a properly defined steady state normalisation factor can be seen as a partition function of a fictitious statistical ensemble in which the transition rates of the stochastic process play the role of fugacities. In analogy with the Lee-Yang description of phase transition of equilibrium systems, they studied the zeroes in the complex plane of the normalisation factor in order to find phase transitions in nonequilibrium steady states. We show that like for equilibrium systems, the ``densities'' associated to the rates are non-decreasing functions of the rates and therefore one can obtain the location and nature of phase transitions directly from the analytical properties of the ``densities''. We illustrate this phenomenon for the asymmetric exclusion process. We actually show that its normalisation factor coincides with an equilibrium partition function of a walk model in which the ``densities'' have a simple physical interpretation.Comment: LaTeX, 23 pages, 3 EPS figure
    • …
    corecore