3,081 research outputs found
Guest edited collection: fungal evolution and diversity
There are 5 million fungal species. However, the discovery and classification of fungi are in high flux. Modern concepts indicate that the three kingdoms of fungi are Chromista, Fungi and Protozoa. Strong support for the wrong phylogeny can occur without correct analytical methods. In the current Collection we envisaged fungi representing extremely diverse and ancient eukaryotic organisms, with familiar groups such as mushrooms, yeasts and moulds. We collected 6 fascinating papers in three areas of Diversity, Chemical Diversity and Evolution.(undefined)info:eu-repo/semantics/publishedVersio
In situ temperature measurements in microwave-heated gassolid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction
Infrared thermographic techniques have been used for the first time to determine real-time gas and solid temperatures, as well as gas- solid temperature gradients in microwave heated structured reactors. A special reactor vessel has been developed that allows direct observation of the catalyst under microwave heating, and an operating procedure is presented to obtain gas and solid apparent emissivities as a function of temperature. These values are thereafter used to calculate temperatures at any point in the gas and solid phases under reaction. The method has been used to obtain gas and solid temperatures during the ethylene epoxidation reaction carried out on a silver-copper oxide catalyst. The direct heating of the monolith walls produced a stable, large temperature gradient between the solid and the gas phase
Localization and ordering of lipids around Aquaporin-0: Proteinand lipid mobility effects.
Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids
Mechanical properties of diamond lattice structures based on main parameters and strain rate
The diamond triply periodic minimal surface structure has a high mechanical property–weight ratio. They can be modified by changing their internal parameters or the material. They are generated using the additive manufacturing (AM) that possibilities the use of various materials for generating zones with different mechanical properties or by modifying their internal parameters. However, the effects of internal parameters in the mechanical properties have not been defined in detail. Furthermore, the strain rate modifies these mechanical properties. In this study, the effects of the internal parameters and strain rate were evaluated and additionally, the failure mechanism of the structures
Lepton Number Violating Radiative Decay in Models with R-parity Violation
Models with explicit R-parity violation can induce new rare radiative decay
modes of the boson into single supersymmetric particles which also violate
lepton number. We examine the rate and signature for one such decay,
, and find that such a mode will be very difficult
to observe, due its small branching fraction, even if the lepton number
violating coupling in the superpotential is comparable in strength to
electromagnetism. This parallels a similar result obtained earlier by Hewett in
the case of radiative decays.Comment: 10 pages, 2 figures(available on request), LaTex, ANL-HEP-PR-92-8
Report on advances for pediatricians in 2018: allergy, cardiology, critical care, endocrinology, hereditary metabolic diseases, gastroenterology, infectious diseases, neonatology, nutrition, respiratory tract disorders and surgery.
This review reported notable advances in pediatrics that have been published in 2018. We have highlighted progresses in allergy, cardiology, critical care, endocrinology, hereditary metabolic diseases, gastroenterology, infectious diseases, neonatology, nutrition, respiratory tract disorders and surgery. Many studies have informed on epidemiologic observations. Promising outcomes in prevention, diagnosis and treatment have been reported. We think that advances realized in 2018 can now be utilized to ameliorate patient car
- …