12 research outputs found

    Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys

    Full text link
    Gamma-ray bursts are linked to the most distant objects in the Universe, but detecting them is a rare event. With a dedicated near-infrared telescope to observe in tandem with the optical Vera Rubin Observatory, ten or so high-redshift (z ≳ 6) gamma-ray bursts could potentially be detected every year. </p

    Photometric redshift estimation for gamma-ray bursts from the early Universe

    No full text
    Future detection of high-redshift gamma-ray bursts (GRBs) will be an important tool for studying the early Universe. Fast and accurate redshift estimation for detected GRBs is key for encouraging rapid follow-up observations by ground- and space-based telescopes. Low-redshift dusty interlopers pose the biggest challenge for GRB redshift estimation using broad photometric bands, as their high extinction can mimic a high-redshift GRB. To assess false alarms of high-redshift GRB photometric measurements, we simulate and fit a variety of GRBs using phozzy, a simulation code developed to estimate GRB photometric redshifts, and test the ability to distinguish between high- and low-redshift GRBs when using simultaneously observed photometric bands. We run the code with the wavelength bands and instrument parameters for the Photo-z Infrared Telescope (PIRT), an instrument designed for the Gamow mission concept. We explore various distributions of host galaxy extinction as a function of redshift, and their effect on the completeness and purity of a high-redshift GRB search with the PIRT. We find that for assumptions based on current observations, the completeness and purity range from ∼82 to 88 per cent and from ∼84 to, respectively. For the priors optimized to reduce false positives, only of low-redshift GRBs will be mistaken as a high-redshift one, corresponding to ∼1 false alarm per 500 detected GRBs

    An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907

    Get PDF
    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 1041 erg second[Formula: see text]) might harbor NSs

    A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A

    No full text
    Context. GRB 211106A and GRB 211227A are two recent gamma-ray bursts (GRBs) whose initial X-ray position enabled us to possibly associate them with bright, low-redshift galaxies (z < 0.7). The prompt emission properties suggest that GRB 211106A is a genuine short-duration GRB and GRB 211227A is a short GRB with extended emission. Therefore, they are likely to be produced by a compact binary merger. However, a classification based solely on the prompt emission properties can be misleading. Aims. The possibility of having two short GRBs occurring in the local Universe makes them ideal targets for the search of associated kilonova (KN) emission and for detailed studies of the host galaxy properties. Methods. We carried out deep optical and near-infrared (NIR) follow-up with the ESO-VLT FORS2, HAWK-I, and MUSE instruments for GRB 211106A and with ESO-VLT FORS2 and X-shooter for GRB 211227A, starting from hours after the X-ray afterglow discovery up to days later. We performed photometric analysis to look for afterglow and KN emissions associated with the bursts, together with imaging and spectroscopic observations of the host galaxy candidates. We compared the results obtained from the optical/NIR observations with the available Swift X-Ray Telescope (XRT) and others high-energy data of both events. Results. For both GRBs we placed deep limits to the optical/NIR afterglow and KN emission. We identified their associated host galaxies, GRB 211106A at a photometric redshift z = 0.64, GRB 211227A at a spectroscopic z = 0.228. From MUSE and X-shooter spectra we derived the host galaxy properties, which turned out to be consistent with short GRBs typical hosts. We also compared the properties of GRB 211106A and GRB 211227A with those of the short GRBs belonging to the S-BAT4 sample, here extended up to December 2021, in order to further investigate the nature of these two bursts. Conclusions. Our study of the prompt and afterglow phase of the two GRBs, together with the analysis of their associated host galaxies, allows us to confirm the classification of GRB 211106A as a short GRB, and GRB 211227A as a short GRB with extended emission. The absence of an optical/NIR counterpart down to deep magnitude limits is likely due to high local extinction for GRB 211106A and a peculiarly faint kilonova for GRB 211227A.</p

    The EXTraS project: Exploring the X-ray transient and variable sky

    Get PDF
    Temporal variability in flux and spectral shape is ubiquitous in the X-ray sky and carries crucial information about the nature and emission physics of the sources. The EPIC instrument on board the XMM-Newton observatory is the most powerful tool for studying variability even in faint sources. Each day, it collects a large amount of information about hundreds of new serendipitous sources, but the resulting huge (and growing) dataset is largely unexplored in the time domain. The project called Exploring the X-ray transient and variable sky (EXTraS) systematically extracted all temporal domain information in the XMM-Newton archive. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in timescale and six orders of magnitude in flux, and a search for fast transients that were missed by standard image analysis. All results, products, and software tools have been released to the community in a public archive. A science gateway has also been implemented to allow users to run the EXTraS analysis remotely on recent XMM datasets. We give details on the new algorithms that were designed and implemented to perform all steps of EPIC data analysis, including data preparation, source and background modelling, generation of time series and power spectra, and search for and characterisation of different types of variabilities. We describe our results and products and give information about their basic statistical properties and advice on their usage. We also describe available online resources. The EXTraS database of results and its ancillary products is a rich resource for any kind of investigation in almost all fields of astrophysics. Algorithms and lessons learnt from our project are also a very useful reference for any current and future experiment in the time domain

    Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at <i>z</i> = 2 − 4 using JWST

    No full text
    Much of what is known of the chemical composition of the universe is based on emission line spectra from star forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z = 2.1 − 4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed R^\hat{R} metallicity diagnostic (±0.2 dex). This agreement implies a relatively chemically-homogeneous multi-phase interstellar medium, and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB 090323 at z = 4.7, consistent with what has been seen in other z > 4 galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample.</p

    Correction to: Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at <i>z</i> = 2−4 using JWST

    No full text
    This is a correction to: P. Schady and others, Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at z = 2−4 using JWST, Monthly Notices of the Royal Astronomical Society, Volume 529, Issue 3, April 2024, Pages 2807–2831, https://doi.org/10.1093/mnras/stae677.We found a mistake in our abstract where we accidentally wrote that the host galaxy of GRB 090323 was at z = 4.7 whereas it is in fact at redshift z = 3.58 based on the NIRSpec emission line spectrum of the host galaxy. The redshift of this GRB host galaxy is correctly reported in the rest of the paper. We also found a bug in our code that produces the [O III] λ5007 surface brightness maps of the host galaxies of GRB 050820A and GRB 150403A (figs 1 and 2 of the original paper) that caused the labelled physical pixel scale to be too small by a factor of ∼1.4. This error only affected the axes shown in the figures and has no implications for the rest of the paper. The corresponding pixel-to-kpc conversions have now been corrected and the updated maps are shown in Figs 1 and 2.</p

    Synergies of THESEUS with the large facilities of the '30s and GO opportunities

    No full text
    The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky. It will specifically exploit large samples of gamma-ray bursts to probe the early universe back to the first generation of stars, and to advance multimessenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these activities with multi-wavelength, multi-messenger facilities expected to be operating in the 2030s will open new avenues of exploration in many areas of astrophysics, cosmology and fundamental physics, thus adding considerable strength to the overall scientific impact of THESEUS and these facilities.We discuss here a number of these powerful synergies and guest observer opportunities.</p

    The cosmic buildup of dust and metals: Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3

    No full text
    The chemical enrichment of dust and metals in the interstellar medium of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG) ratios, and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7 40 000) spectroscopic data, including three new sources, for which at least one refractory (e.g., Fe) and one volatile (e.g., S or Zn) element have been detected at S/N > 3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derived the redshift evolution of the dust-corrected, absorption-line-based gas-phase metallicity, [M/H]tot, in these galaxies, for which we determine a linear relation with redshift [M/H]tot(z) = (- 0.21 ± 0.04)z - (0.47 ± 0.14). We then examined the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction, AV, and the derived depletion level. We used a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the interstellar medium probed by the GRBs, they provide strong implications for studies of dust masses that aim to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.</p

    Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements

    No full text
    Context. Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (ɀ), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights with simple featureless power-law spectra that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer (hereafter Gamow) are being proposed to unlock this potential by increasing the rate of identification of high-ɀ (ɀ > 5) GRBs in order to rapidly trigger observations from 6 to 10 m ground telescopes, the James Webb Space Telescope (JWST), and the upcoming Extremely Large Telescopes (ELTs). Aims. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs with arcminute accuracy, and a narrow-field multi-channel photo-ɀ infrared telescope (PIRT) to measure their photometric redshifts for > 80% of the LEXT detections using the Lyman-α dropout technique. We use a large sample of observed GRB afterglows to derive the PIRT sensitivity requirement. Methods. We compiled a complete sample of GRB optical–near-infrared (optical-NIR) afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high-ɀ GRB afterglows. This sample is expanded with over 2837 unpublished data points for 40 of these GRBs. We performed full light-curve and spectral-energy-distribution analyses of these after-glows to derive their true luminosity at very early times. We compared the high-ɀ sample to the comparison sample at lower redshifts. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. This was validated using a theoretical approach to predicting the afterglow brightness. We then followed the evolution of the luminosity to predict requirements for ground- and space-based follow-up. Finally, we discuss the potential biases between known GRB afterglow samples and those to be detected by Gamow. Results. We find that the luminosity distribution of high-ɀ GRB afterglows is comparable to those at lower redshift, and we therefore are able to use the afterglows of lower-ɀ GRBs as proxies for those at high ɀ. We find that a PIRT sensitivity of 15 µJy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000 s of the GRB trigger will meet the Gamow mission requirements. Depending on the ɀ and NIR band, we find that between 75% and 85% of all afterglows at ɀ > 5 will be recovered by Gamow at 5σ detection significance, allowing the determination of a robust photo-ɀ. As a check for possible observational biases and selection effects, we compared the results with those obtained through population-synthesis models, and find them to be consistent. Conclusions. Gamow and other high-ɀ GRB missions will be capable of using a relatively modest 0.3 m onboard NIR photo-ɀ telescope to rapidly identify and report high-ɀ GRBs for further follow-up by larger facilities, opening a new window onto the era of reionization and the high-redshift Universe.</p
    corecore