155 research outputs found

    Spring wheat mixtures in northern crop production: Quality characteristics

    Get PDF
    Mixtures of two or three spring wheat cultivars (Tähti/Kadett; Tähti/Kadett/ Tapio) were grown on experimental plots and the resulting crops were analyzed by selected procedures to indicate breadmaking quality. The quality tests included tests on the protein content, sedimentation values and rheological properties of doughs. Comparisons between mixtures and the means of pure components did not show any definite variations in terms of major quality characteristics. The quality of mixtures appears to be predictable from the performance of the pure components. The present study suggests that mixtures give equal quality compared with pure stands

    No SMAD4 hypermethylation in colorectal cancer

    Get PDF
    The chromosome region 18q21 is frequently deleted in colorectal cancers. Three candidate tumour suppressor genes, DCC, SMAD4 and SMAD2, map to this region. The SMAD4(DPC4) gene was recently identified as a candidate pancreatic cancer suppressor gene. It is also a gene for juvenile polyposis tumour predisposition syndrome. Somatic SMAD4 mutations have been detected in some colorectal carcinomas. However, the frequency of these mutations is relatively low, and whether SMAD4 plays a key role in colorectal tumorigenesis is still unclear. In addition to loss of chromosomal material and intragenic mutations there is a third mechanism, DNA methylation, which may have an important role in gene inactivation. In the present study, we examined whether promoter hypermethylation could be a mechanism for SMAD4 inactivation. In total, 42 colorectal tumours were selected for the methylation analysis and no evidence of promoter hypermethylation was found. Our result suggests that hypermethylation of the SMAD4 promoter region is not a frequent event in colorectal tumorigenesis. © 2000 Cancer Research Campaig

    Dispersion from C^alpha or N^H: 4D experiments for backbone resonance assignment of intrinsically disordered proteins

    Get PDF
    N-HSQC spectrum. Application of these 4D experiments is demonstrated using BilRI (165 aa), an outer-membrane intrinsically disordered protein from the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans. BilRI amino acid sequence encompasses three very similar repeats with a 13-residue identical stretch in two of them

    Comprehensive analysis of SMAD4 mutations and protein expression in juvenile polyposis - Evidence for a distinct genetic pathway and polyp morphology in SMAD4 mutation carriers

    No full text
    Juvenile polyposis syndrome (JPS; OMIM 174900) is a rare disorder which is characterized by the presence of hamartomatous polyps throughout the gastrointestinal tract and an increased risk of gastrointestinal malignancy. Mutations of the SMAD4 gene on chromosome 18q21.1 have been shown to cause a subset of JPS cases, with estimates ranging from 20% to >50%. Characterization of the genes that cause the remainder of JPS cases relies on the certainty that SMAD4 is not the causative gene. We have undertaken a comprehensive analysis of germline SMAD4 mutations in a cohort of JPS patients to define the spectrum of mutations that cause JPS. We have analyzed a series of polyps from these patients for SMAD4 protein expression. We have also performed a blinded assessment of polyp material to look for morphological differences between polyps from patients with and without a germline SMAD4 mutation. The results indicate that almost all germline SMAD4 mutations are readily detectable by screening genomic DNA using polymerase chain reaction-based methods; SMAD4 can be excluded as the causative gene in the majority of our JPS cohort. Loss of SMAD4 expression occurs in most polyps from SMAD4 mutation carriers, even those with missense germline mutations. SMAD4 loss in polyps is, however, not a feature of cases that are not caused by SMAD4 mutations, indicating that these polyps develop along a SMAD4-independent pathway. The morphology of polyps from SMAD4 mutation carriers is subtly different from other JPS polyps, notably including a more prominent epithelial component in the former

    Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers

    Get PDF
    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers

    Smad4-expression is decreased in breast cancer tissues: a retrospective study

    Get PDF
    BACKGROUND: Although transforming growth factor β (TGF-β) typically inhibits proliferation of epithelial cells, consistent with a tumor suppressor activity, it paradoxically also exhibits pro-metastatic activity in the later stages of carcinogenesis. Since tumors often display altered TGF-β signaling, particularly involving the Smad-pathway, we investigated the role of Smad4-expression in breast cancer. METHODS: Smad4 expression was investigated by immunohistochemistry in formalin-fixed, paraffin-embedded tissue from 197 samples of primary breast cancer obtained between 1986 and 1998. The prognostic value of Smad4-expression was analyzed. RESULTS: Smad4 expression was found to be reduced in lobular and ductal breast carcinoma as compared to surrounding uninvolved lobular and ductal breast epithelia (p < 0.001, n = 50). Smad4-expression correlated positively with expression of TGF-β-receptor I (p < 0.001, n = 197) and TGF-β-receptor II (p < 0.001, n = 197), but showed no significant correlation with tumor size, metastases, nodal status, histological grade, histological type, or estrogen receptor expression. While not achieving statistical significance, there was a trend towards longer survival times in patients with Smad4 negative tumors. CONCLUSION: According to the suggested role of Smad4 as a tumor suppressor we observed that expression of Smad4 is lower in human breast cancer than in surrounding breast epithelium. However, we also observed a trend towards longer survival times in Smad4-negative patients, indicating the complex role of TGF-β signaling in tumor progression

    Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.</p> <p>Methods</p> <p>To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.</p> <p>Results</p> <p>Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.</p> <p>Conclusion</p> <p>Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.</p

    Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario site of the breast cancer family registry (CFR)

    Get PDF
    Abstract Introduction A common feature of neoplastic cells is that mutations in SMADs can contribute to the loss of sensitivity to the anti-tumor effects of transforming growth factor-β (TGF-β). However, germline mutation analysis of SMAD3 and SMAD4, the principle substrates of the TGF-β signaling pathway, has not yet been conducted in breast cancer. Thus, it is currently unknown whether germline SMAD3 and SMAD4 mutations are involved in breast cancer predisposition. Methods We performed mutation analysis of the highly conserved mad-homology 2 (MH2) domains for both genes in genomic DNA from 408 non-BRCA1/BRCA2 breast cancer cases and 710 population controls recruited by the Ontario site of the breast cancer family registry (CFR) using denaturing high-performance liquid chromatography (DHPLC) and direct DNA sequencing. The results were interpreted in several ways. First, we adapted nucleotide diversity analysis to quantitatively assess whether the frequency of alterations differ between the two genes. Next, in silico tools were used to predict variants' effect on domain function and mRNA splicing. Finally, 37 cases or controls harboring alterations were tested for aberrant splicing using reverse-transcription polymerase chain reaction (PCR) and real-time PCR statistical comparison of germline expressions by non-parametric Mann-Whitney test of independent samples. Results We identified 27 variants including 2 novel SMAD4 coding variants c.1350G > A (p.Gln450Gln), and c.1701A > G (p.Ile525Val). There were no inactivating mutations even though c.1350G > A was predicted to affect exonic splicing enhancers. However, several additional findings were of note: 1) nucleotide diversity estimate for SMAD3 but not SMAD4 indicated that coding variants of the MH2 domain were more infrequent than expected; 2) in breast cancer cases SMAD3 was significantly over-expressed relative to controls (P A was associated with elevated germline expression (> 5-fold); 3) separate analysis using tissue expression data showed statistically significant over-expression of SMAD3 and SMAD4 in breast carcinomas. Conclusions This study shows that inactivating germline alterations in SMAD3 and SMAD4 are rare, suggesting a limited role in driving tumorigenesis. Nevertheless, aberrant germline expressions of SMAD3 and SMAD4 may be more common in breast cancer than previously suspected and offer novel insight into their roles in predisposition and/or progression of breast cancer
    • …
    corecore