5,841 research outputs found

    Chaotic diffusion of particles with finite mass in oscillating convection flows

    Full text link
    Deterministic diffusion in temporally oscillating convection is studied for particles with finite mass. The particles are assumed to obey a simple dissipative dynamical system and the particle diffusion is induced by the strange attractor. The diffusion constants are numerically calculated for convection models with free and rigid boundary conditions.Comment: 5 figure

    Gap solitons in Bragg gratings with a harmonic superlattice

    Full text link
    Solitons are studied in a model of a fiber Bragg grating (BG) whose local reflectivity is subjected to periodic modulation. The superlattice opens an infinite number of new bandgaps in the model's spectrum. Averaging and numerical continuation methods show that each gap gives rise to gap solitons (GSs), including asymmetric and double-humped ones, which are not present without the superlattice.Computation of stability eigenvalues and direct simulation reveal the existence of completely stable families of fundamental GSs filling the new gaps - also at negative frequencies, where the ordinary GSs are unstable. Moving stable GSs with positive and negative effective mass are found too.Comment: 7 pages, 3 figures, submitted to EP

    Localized matter-waves patterns with attractive interaction in rotating potentials

    Full text link
    We consider a two-dimensional (2D) model of a rotating attractive Bose-Einstein condensate (BEC), trapped in an external potential. First, an harmonic potential with the critical strength is considered, which generates quasi-solitons at the lowest Landau level (LLL). We describe a family of the LLL quasi-solitons using both numerical method and a variational approximation (VA), which are in good agreement with each other. We demonstrate that kicking the LLL mode or applying a ramp potential sets it in the Larmor (cyclotron) motion, that can also be accurately modeled by the VA.Comment: 13 pages, 11 figure

    Nondegenerate Super-Anti-de Sitter Algebra and a Superstring Action

    Get PDF
    We construct an Anti-de Sitter(AdS) algebra in a nondegenerate superspace. Based on this algebra we construct a covariant kappa-symmetric superstring action, and we examine its dynamics: Although this action reduces to the usual Green-Schwarz superstring action in flat limit, the auxiliary fermionic coordinates of the nondegenerate superspace becomes dynamical in the AdS background.Comment: Latex, 12 pages, explanations added, version to be published in Phys. Rev.

    Fluctuation Dissipation Relation for a Langevin Model with Multiplicative Noise

    Full text link
    A random multiplicative process with additive noise is described by a Langevin equation. We show that the fluctuation-dissipation relation is satisfied in the Langevin model, if the noise strength is not so strong.Comment: 11 pages, 6 figures, other comment

    Disordered Regimes of the one-dimensional complex Ginzburg-Landau equation

    Full text link
    I review recent work on the ``phase diagram'' of the one-dimensional complex Ginzburg-Landau equation for system sizes at which chaos is extensive. Particular attention is paid to a detailed description of the spatiotemporally disordered regimes encountered. The nature of the transition lines separating these phases is discussed, and preliminary results are presented which aim at evaluating the phase diagram in the infinite-size, infinite-time, thermodynamic limit.Comment: 14 pages, LaTeX, 9 figures available by anonymous ftp to amoco.saclay.cea.fr in directory pub/chate, or by requesting them to [email protected]

    Characterization of ellipses as uniformly dense sets with respect to a family of convex bodies

    Full text link
    Let K \subset R^N be a convex body containing the origin. A measurable set G \subset R^N with positive Lebesgue measure is said to be uniformly K-dense if, for any fixed r > 0, the measure of G \cap (x + rK) is constant when x varies on the boundary of G (here, x + rK denotes a translation of a dilation of K). We first prove that G must always be strictly convex and at least C1,1-regular; also, if K is centrally symmetric, K must be strictly convex, C1,1-regular and such that K = G - G up to homotheties; this implies in turn that G must be C2,1- regular. Then for N = 2, we prove that G is uniformly K-dense if and only if K and G are homothetic to the same ellipse. This result was already proven by Amar, Berrone and Gianni in [3]. However, our proof removes their regularity assumptions on K and G and, more importantly, it is susceptible to be generalized to higher dimension since, by the use of Minkowski's inequality and an affine inequality, avoids the delicate computations of the higher-order terms in the Taylor expansion near r = 0 for the measure of G\cap(x+rK) (needed in [3])

    Stochastic synchronization in globally coupled phase oscillators

    Full text link
    Cooperative effects of periodic force and noise in globally Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation is entrained to the external periodic force in an intermediate range of noise strength. These enhancement phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic resonance and stochastic synchronization in globally coupled systems.Comment: 5 figure

    Cascade Failure in a Phase Model of Power Grids

    Full text link
    We propose a phase model to study cascade failure in power grids composed of generators and loads. If the power demand is below a critical value, the model system of power grids maintains the standard frequency by feedback control. On the other hand, if the power demand exceeds the critical value, an electric failure occurs via step out (loss of synchronization) or voltage collapse. The two failures are incorporated as two removal rules of generator nodes and load nodes. We perform direct numerical simulation of the phase model on a scale-free network and compare the results with a mean-field approximation.Comment: 7 pages, 2 figure

    Quantum switches and quantum memories for matter-wave lattice solitons

    Get PDF
    We study the possibility of implementing a quantum switch and a quantum memory for matter wave lattice solitons by making them interact with "effective" potentials (barrier/well) corresponding to defects of the optical lattice. In the case of interaction with an "effective" potential barrier, the bright lattice soliton experiences an abrupt transition from complete transmission to complete reflection (quantum switch) for a critical height of the barrier. The trapping of the soliton in an "effective" potential well and its release on demand, without loses, shows the feasibility of using the system as a quantum memory. The inclusion of defects as a way of controlling the interactions between two solitons is also reported
    • …
    corecore