4,884 research outputs found

    The effects of entry on incumbent innovation and productivity

    Get PDF
    How does firm entry affect innovation incentives and productivity growth in incumbent firms? Micro-data suggests that there is heterogeneity across industries--incumbents in technologically advanced industries react positively to foreign firm entry, but not in laggard industries. To explain this pattern, we introduce entry into a Schumpeterian growth model with multiple sectors which differ by their distance to the technological frontier. We show that technologically advanced entry threat spurs innovation incentives in sectors close to the technological frontier--successful innovation allows incumbents to prevent entry. In laggard sectors it discourages innovation--increased entry threat reduces incumbents' expected rents from innovating. We find that the empirical patterns hold using rich micro-level productivity growth and patent panel data for the UK, and controlling for the endogeneity of entry by exploiting the large number of policy reforms undertaken during the Thatcher era

    Entry and productivity growth: evidence from microlevel panel data

    Get PDF
    How does entry affect productivity growth of incumbents? In this paper we exploit policy reforms in the United Kingdom that changed entry conditions by opening up the U.K. economy during the 1980s and panel data on British establishments to shed light on this question. We show that more entry, measured by a higher share of industry employment in foreign firms, has led to faster total factor productivity growth of domestic incumbent firms and thus to faster aggregate productivity growth

    Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework

    Get PDF
    We develop a new quantile‐based panel data framework to study the nature of income persistence and the transmission of income shocks to consumption. Log‐earnings are the sum of a general Markovian persistent component and a transitory innovation. The persistence of past shocks to earnings is allowed to vary according to the size and sign of the current shock. Consumption is modeled as an age‐dependent nonlinear function of assets, unobservable tastes, and the two earnings components. We establish the nonparametric identification of the nonlinear earnings process and of the consumption policy rule. Exploiting the enhanced consumption and asset data in recent waves of the Panel Study of Income Dynamics, we find that the earnings process features nonlinear persistence and conditional skewness. We confirm these results using population register data from Norway. We then show that the impact of earnings shocks varies substantially across earnings histories, and that this nonlinearity drives heterogeneous consumption responses. The framework provides new empirical measures of partial insurance in which the transmission of income shocks to consumption varies systematically with assets, the level of the shock, and the history of past shocks

    Observation of Spin-glass-like Behavior in SrRuO3 Epitaxial Thin Films

    Full text link
    We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 \AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film (unidirectional) irrespective of crystallographic orientation. An attempt has been made to understand the nature and origin of spin-glass behavior, which fits well with Heisenberg model.Comment: 5 pages, 5 Figure

    Gain Stabilization of a Submillimeter SIS Heterodyne Receiver

    Full text link
    We have designed a system to stabilize the gain of a submillimeter heterodyne receiver against thermal fluctuations of the mixing element. In the most sensitive heterodyne receivers, the mixer is usually cooled to 4 K using a closed-cycle cryocooler, which can introduce ~1% fluctuations in the physical temperature of the receiver components. We compensate for the resulting mixer conversion gain fluctuations by monitoring the physical temperature of the mixer and adjusting the gain of the intermediate frequency (IF) amplifier that immediately follows the mixer. This IF power stabilization scheme, developed for use at the Submillimeter Array (SMA), a submillimeter interferometer telescope on Mauna Kea in Hawaii, routinely achieves a receiver gain stability of 1 part in 6,000 (rms to mean). This is an order of magnitude improvement over the typical uncorrected stability of 1 part in a few hundred. Our gain stabilization scheme is a useful addition to SIS heterodyne receivers that are cooled using closed-cycle cryocoolers in which the 4 K temperature fluctuations tend to be the leading cause of IF power fluctuations.Comment: 7 pages, 6 figures accepted to IEEE Transactions on Microwave Theory and Technique

    Non-Collinear Ferromagnetic Luttinger Liquids

    Full text link
    The presence of electron-electron interactions in one dimension profoundly changes the properties of a system. The separation of charge and spin degrees of freedom is just one example. We consider what happens when a system consisting of a ferromagnetic region of non-collinearity, i.e. a domain wall, is coupled to interacting electrons in one-dimension (more specifically a Luttinger liquid). The ferromagnetism breaks spin charge separation and the presence of the domain wall introduces a spin dependent scatterer into the problem. The absence of spin charge separation and the effects of the electron correlations results in very different behaviour for the excitations in the system and for spin-transfer-torque effects in this model.Comment: 6 pages, submitted to Journal of Physics: Conference Series for JEMS 201

    Measurements of thermodynamic and transport properties of EuC2_2: a low-temperature analogue of EuO

    Full text link
    EuC2_2 is a ferromagnet with a Curie-temperature of TC15T_C \simeq 15\,K. It is semiconducting with the particularity that the resistivity drops by about 5 orders of magnitude on cooling through TCT_C, which is therefore called a metal-insulator transition. In this paper we study the magnetization, specific heat, thermal expansion, and the resistivity around this ferromagnetic transition on high-quality EuC2_2 samples. At TCT_C we observe well defined anomalies in the specific heat cp(T)c_p(T) and thermal expansion α(T)\alpha(T) data. The magnetic contributions of cp(T)c_p(T) and α(T)\alpha(T) can satisfactorily be described within a mean-field theory, taking into account the magnetization data. In zero magnetic field the magnetic contributions of the specific heat and thermal expansion fulfill a Gr\"uneisen-scaling, which is not preserved in finite fields. From an estimation of the pressure dependence of TCT_C via Ehrenfest's relation, we expect a considerable increase of TCT_C under applied pressure due to a strong spin-lattice coupling. Furthermore the influence of weak off stoichiometries δ\delta in EuC2±δ_{2 \pm \delta} was studied. It is found that δ\delta strongly affects the resistivity, but hardly changes the transition temperature. In all these aspects, the behavior of EuC2_2 strongly resembles that of EuO.Comment: 7 pages, 6 figure
    corecore