712 research outputs found
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Testing probability distributions underlying aggregated data
In this paper, we analyze and study a hybrid model for testing and learning
probability distributions. Here, in addition to samples, the testing algorithm
is provided with one of two different types of oracles to the unknown
distribution over . More precisely, we define both the dual and
cumulative dual access models, in which the algorithm can both sample from
and respectively, for any ,
- query the probability mass (query access); or
- get the total mass of , i.e. (cumulative
access)
These two models, by generalizing the previously studied sampling and query
oracle models, allow us to bypass the strong lower bounds established for a
number of problems in these settings, while capturing several interesting
aspects of these problems -- and providing new insight on the limitations of
the models. Finally, we show that while the testing algorithms can be in most
cases strictly more efficient, some tasks remain hard even with this additional
power
On the generality of the Cohen and Glashow constraints on the neutrino velocity
We discuss the kinematic limits for the process \nu_\mu \rightarrow \nu_\mu +
e^+ + e^- in the assumption that neutrinos are superluminal. We derive our
results by assuming that: i) it exists one reference frame in which energy and
momentum are conserved; ii) the Hamilton-Jacobi equation v=dE/dp is valid; iii)
the present experimental information on the neutrino velocity at different
energies are correct. We show that the considered process cannot be avoided
unless very peculiar neutrino dispersion laws are assumed.Comment: 5 page
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
Testing formula satisfaction
We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from
satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size
Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs
For a graph , let be the partition function of the
monomer-dimer system defined by , where is the
number of matchings of size in . We consider graphs of bounded degree
and develop a sublinear-time algorithm for estimating at an
arbitrary value within additive error with high
probability. The query complexity of our algorithm does not depend on the size
of and is polynomial in , and we also provide a lower bound
quadratic in for this problem. This is the first analysis of a
sublinear-time approximation algorithm for a # P-complete problem. Our
approach is based on the correlation decay of the Gibbs distribution associated
with . We show that our algorithm approximates the probability
for a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results to
approximate the average size and the entropy of such a matching within an
additive error with high probability, where again the query complexity is
polynomial in and the lower bound is quadratic in .
Our algorithms are simple to implement and of practical use when dealing with
massive datasets. Our results extend to other systems where the correlation
decay is known to hold as for the independent set problem up to the critical
activity
Quantum Algorithms for Learning and Testing Juntas
In this article we develop quantum algorithms for learning and testing
juntas, i.e. Boolean functions which depend only on an unknown set of k out of
n input variables. Our aim is to develop efficient algorithms:
- whose sample complexity has no dependence on n, the dimension of the domain
the Boolean functions are defined over;
- with no access to any classical or quantum membership ("black-box")
queries. Instead, our algorithms use only classical examples generated
uniformly at random and fixed quantum superpositions of such classical
examples;
- which require only a few quantum examples but possibly many classical
random examples (which are considered quite "cheap" relative to quantum
examples).
Our quantum algorithms are based on a subroutine FS which enables sampling
according to the Fourier spectrum of f; the FS subroutine was used in earlier
work of Bshouty and Jackson on quantum learning. Our results are as follows:
- We give an algorithm for testing k-juntas to accuracy that uses
quantum examples. This improves on the number of examples used
by the best known classical algorithm.
- We establish the following lower bound: any FS-based k-junta testing
algorithm requires queries.
- We give an algorithm for learning -juntas to accuracy that
uses quantum examples and
random examples. We show that this learning algorithms is close to optimal by
giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum
Information Processin
What does the local structure of a planar graph tell us about its global structure?
The local k-neighborhood of a vertex v in an unweighted graph Gâ=â(V,E) with vertex set V and edge set E is the subgraph induced by all vertices of distance at most k from v. The rooted k-neighborhood of v is also called a k-disk around vertex v. If a graph has maximum degree bounded by a constant d, and k is also constant, the number of isomorphism classes of k-disks is constant as well. We can describe the local structure of a bounded-degree graph G by counting the number of isomorphic copies in G of each possible k-disk. We can summarize this information in form of a vector that has an entry for each isomorphism class of k-disks. The value of the entry is the number of isomorphic copies of the corresponding k-disk in G. We call this vector frequency vector of k-disks. If we only know this vector, what does it tell us about the structure of G?
In this paper we will survey a series of papers in the area of Property Testing that leads to the following result (stated informally): There is a kâ=âk(Δ,d) such that for any planar graph G its local structure (described by the frequency vector of k-disks) determines G up to insertion and deletion of at most Δd n edges (and relabelling of vertices)
- âŠ