6,105 research outputs found

    Feeding the fire: Tracing the mass-loading of 10^7 K galactic outflows with O VI absorption

    Get PDF
    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z~2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km/s the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.Comment: 17 pages, 12 figures, accepted for publication in MNRA

    Lifting the Veil on Obscured Accretion: Active Galactic Nuclei Number Counts and Survey Strategies for Imaging Hard X-Ray Missions

    Get PDF
    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (~20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions

    Listen; There's a Hell of a Good Universe Next Door; Let's Go

    Get PDF
    Scientific research is key to our nation's technological and economic development. One can attempt to focus research toward specific applications, but science has a way of surprising us. Think for example of the "charge-couple device", which was originally invented for memory storage, but became the modern digital camera that is used everywhere from camera phones to the Hubble Space Telescope. Using digital cameras, Hubble has taken pictures that reach back 12 billion light-years into the past, when the Universe was only 1-2 billion years old. Such results would never have been possible with the film cameras Hubble was originally supposed to use. Over the past two decades, Hubble and other telescopes have shown us much about the Universe -- many of these results are shocking. Our galaxy is swarming with planets; most of the mass in the Universe is invisible; and our Universe is accelerating ever faster and faster for unknown reasons. Thus, we live in a "hell of a good universe", to quote e.e. cummings, that we fundamentally don't understand. This means that you, as young scientists, have many worlds to discove

    A Magnified View of the Kinematics and Morphology of RCSGA 032727-132609: Zooming in on a Merger at z=1.7

    Get PDF
    We present a detailed analysis of multi-wavelength HST/WFC3 imaging and Keck/OSIRIS near-IR AO-assisted integral field spectroscopy for a highly magnified lensed galaxy at z=1.70. This young starburst is representative of UV-selected star-forming galaxies (SFG) at z~2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction, and there is a clear signature of a tidal tail. We constrain the age, reddening, SFR and stellar mass of the star-forming clumps from SED modelling of the WFC3 photometry and measure their H-alpha luminosity, metallicity and outflow properties from the OSIRIS data. With strong star formation driven outflows in four clumps, RCSGA0327 is the first high redshift SFG at stellar mass <10^10 M_sun with spatially resolved stellar winds. We compare the H-alpha luminosities, sizes and dispersions of the star-forming regions to other high-z clumps as well as local giant HII regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local Universe. Spatially resolved SED modelling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system which is not detected in H-alpha emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.Comment: 22 pages, 16 figures, accepted to Ap

    Watching Galaxy Evolution in High Definition

    Get PDF
    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10-100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1-3, the epoch when most of the Universe's stars were formed

    Status Update on the James Webb Space Telescope Project

    Get PDF
    The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched in approx.2018. The observatory will have four instruments covering 0.6 to 28 micron, including a multi-object spectrograph, two integral fie ld units, and grisms optimized for exoplanets. I will review JWST's k ey science themes, as well as exciting new ideas from the recent JWST Frontiers Workshop. I will summarize the technical progress and miss ion status. Recent highlights: All mirrors have been fabricated, polished, and gold-coated; the mirror is expected to be diffraction-limite d down to a wavelength of 2 micron. The MIRI instrument just complete d its cryogenic testing. STScI has released exposure time calculators and sensitivity charts to enable scientists to start thinking about how to use JWST for their science

    Why Space Telescopes Are Amazing

    Get PDF
    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster

    Space Telescopes

    Get PDF
    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed
    corecore