159 research outputs found

    Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    Get PDF
    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh

    Suppression of Richtmyer-Meshkov instability via special pairs of shocks and phase transitions

    Full text link
    The classical Richtmyer-Meshkov instability is a hydrodynamic instability characterizing the evolution of an interface following shock loading. In contrast to other hydrodynamic instabilities such as Rayleigh-Taylor, it is known for being unconditionally unstable: regardless of the direction of shock passage, any deviations from a flat interface will be amplified. In this article, we show that for negative Atwood numbers, there exist special sequences of shocks which result in a nearly perfectly suppressed instability growth. We demonstrate this principle computationally and experimentally with stepped fliers and phase transition materials. A fascinating immediate corollary is that in specific instances a phase transitioning material may self-suppress RMI

    Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation

    No full text
    Background Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. Methods Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. Results In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation

    GMOs: Non-Health Issues

    Get PDF
    The controversy over genetically modified [GM] organisms is often framed in terms of possible hazards for human health. Articles in a previous volume of this *Encyclopedia* give a general overview of GM crops [@Mulvaney2014] and specifically examine human health [@Nordgard2014] and labeling [@Bruton2014] issues surrounding GM organisms. This article explores several other aspects of the controversy: environmental concerns, political and legal disputes, and the aim of "feeding the world" and promoting food security. Rather than discussing abstract, hypothetical GM organisms, this article explores the consequences of the GM organisms that have actually been deployed in the particular contexts that they have been deployed, on the belief that there is little point in discussing GM organisms in an idealized or context-independent way
    corecore