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A QR Accelerated Volume-to-Surface Boundary
Condition for the Finite Element Solution of Eddy
Current Problems

Daniel A. White, Benjamin J. Fasenfest, Robert N. Rieben, andkMaBtowell

Abstract

We are concerned with the solution of time-dependent electromagneticad@nt problems using a finite element formulation
on three-dimensional unstructured meshes. We allow for multiple céinduegions, and our goal is to develop an efficient compu-
tational method that does not require a computational mesh of the aiiva@gions. This requires a sophisticated global boundary
condition specifying the total fields on the conductor boundaries. Weopeog Biot-Savart law based volume-to-surface boundary
condition to meet this requirement. This Biot-Savart approach is denatedtio be very accurate. In addition, this approach can be
accelerated via a low-rank QR approximation of the discretized Biot-Siawvar

Index Terms

Maxwell’'s equations, computational electromagnetics, low-rank ajpiadion, Biot-Savart law, eddy currents, electromagnetic
diffusion, parallel processing.

I. INTRODUCTION

In this paper, we present a finite element method for solegnultiply connected eddy current problem. While much o thi
presentation is applicable towards frequency-domainyaiglour emphasis here is on transient simulation. Varfiousulations
for the eddy current equations exist and have been exténsardewed and studied in the literature. These includenfdations
which solve for the electric field (thE field formulation) [1], [2], [3], the magnetic field (thd field formulation) [4], [5] or
for the potential field (théd-¢ potential formulation) [6], [7], [8], [9]. Each formulatiohas its advantages and disadvantages
for problems in computational electromagnetics. Howeitdras been shown that when usiHdCurl) andH (Div) conforming
finite element methods there is no differenceaituracyfor these three formulations, even for secondary quastiieh a3
andJ [10]. The difference between the three formulations, whisk primary field variableg,H, andA, respectively, is in the
boundary conditions and the source terms, and is thereiimygysa matter of which formulation is most convenient forigem
electromagnetics problem.

The most difficult electromagnetic diffusion problems emti@red in practice are those that involve multiple conoltscsep-
arated by a non-conducting region, the so-called multiplgnected eddy current problem. While the currents are zetloein
non-conducting region clearly the fields are not, and somia@demust be used to account for these fields. One approach is t
simply mesh the non-conducting region and use a small vdlaerauctivity in this region. While seemingly a crude apmtoa
it works well in practice for many problems, for example @sinconductivity at least faimes smaller than the metal results in
fields correct to within the discretization error [7] [11]h& difficulty with this is twofold; one is the large number aflunowns
and the second is matrix ill-conditioning. More sophisichapproaches include forming a magnetostatic problermhemon-
conducing region using either the vector or scalar magmetiential and coupling the two finite element solutions [&][ or
employing a surface integral equation to correctly modelglobal boundary condition [1] [2] [13].

In the context of Galerkin approximations of electromagrsePDE’s, the choice of the finite element space plays a &ruci
role in the stability and convergence of the discretizatieor instance, in numerical approximations of the magreetit electric
field intensitiesH (Curl) conforming finite element spaces (or edge elements) arempeefover traditional nodal vector spaces
since they eliminate spurious modes in eigenvalue compuatatnd they prevent fictitious charge build-up in timeefegent
computations. The lowest ordét(Curl) conforming basis functions were developed by Whitney [14blwethe advent of
finite element programs. Arbitrary order versions wereodticed by Ncelec [15], [16] as a generalization of the mixed finite
element spaces introduced by P.A. Raviart and J.M. Thon¥$diLH (Div) conforming methods. Application of thekHCurl)
andH (Div) basis functions toward electromagnetics is becoming qamilar and applications can be found in several recent
textbooks [18], [5], [19]

In this paper we focus on th& field formulation for the eddy current problem usikgCurl) basis functions. We assume
a given initial condition (which may be zero) and the problisndriven by either a time-varying voltage or a prescribeadeti
varying current. We allow for multiple conducting regioreparated by air. Each individual conducting region is agglitn be
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homogeneous. The conductors are non-magnetic. Our tdrgpfdications which satisfy these assumptions includedtion
heating, metal forming, and helical magnetic flux comp@sgenerators. Boundary conditions must be applied on theumtor
surfaces, and here we propose to compute the suffdid (for the inhomogeneous Dirichlet condition) Brfield (for the
inhomogeneous Neumann condition) by a direct discretinadif the Biot-Savart law. Compared to surface integral 8qna
methods this approach does rsmtlve an integral equation, only thevaluationof an integral is required. We do not solve
for surface currents and hence need not be concerned withstan or spanning-tree processing for suppression ahiiomal
surface currents. The disadvantage of the Biot-Savart fgwaoech is that it requires a volume-to-surface compuitatitd hence
can be expensive. But this computation can be accelerated adow-rank QR approximation. Low-rank QR approximation
has been demonstrated to be effective at accelerating etyaffi electromagnetic integral equations [20] [21] [223]2We do
not prove that the low-rank QR approximation is superior tdtipole expansions, panel methods, or other acceleratbames;
we employ the low-rank QR approximation because the algoris independent of the Green’s function and can thus béeabpl
to either form of the Biot-Savart law. Our proposed boundzogdition algorithm is verified by comparing to exact aniabft
solutions and by comparing to simply using a large mesh oéttieacuum region.

Il. ELECTROMAGNETIC DIFFUSION EQUATION

When working with multiple finite element spaces, it becomasvenient to use the notation of differential forms as a way
of categorizing the various field quantities from Maxwed#iguations and the subsequent finite element spaces usexttetizie
them. In addition, the calculus of differential forms prdes the necessary transformation rules which allow comgdtbasis
functions to be derived on a reference element and then mappgobal mesh elements. Table | lists various physicahtjties
in electromagnetics and their associated differentiahfor

Physical Quantity Units Diff. Form
Scalar Potentiakp Volts/mP 0-form
Vector PotentialA Webbergm* 1-form
Electric Field IntensityE Volts/mt 1-form
Magnetic Field Intensityd ~ Am peregmt 1-form
Electric Flux DensityD Coulombgn? 2-form
Magnetic Flux DensityB Webbergn? 2-form
Electric Charge Densityy ~ Coulombgm?® 3-form
TABLE |

ELECTROMAGNETIC QUANTITIES AND THEIR ASSOCIATED DIFFERENTAL FORMS

In electromagnetics we have the electric and magnetic figlds, the electric and magnetic flux densitiBs B, and the
constitutive relations

D = ¢E
B = uH
Here we write Maxwell’s Equations in terms BfandB,
0E - 1. . -

0B -

% _OxE 2

o X (2)
0-eE=0 3
0.B=0 (4)

with appropriate boundary conditions and initial condiainderstood. Note thais an independent current source term, which
may or may not exist for every problem. In all of our subseqdermulations, the material propertiesy, ¢ are free to be
symmetric positive definite tensor functions of space, beifmpose the restriction that they are linear time invariant



Now consider solving Maxwell's Equations within a good coatbr. A good conductor is defined by the condition

oE .

= E. 5
g5 <O 5)
Note that (5) depends not only on the material propemimdae, but also on the time rate of change Bf When (5) is

satisfied, Maxwell's equations can be simplified by negn‘&ﬂhes%E term altogether, the so-called low-frequency approxiomti
diffusion approximation or eddy-current approximationheTdiffusion approximation is not valid for most RF, microaxga or
optics problems, but is reasonable for low-frequency EMegaw plasmas or in the earth, as well as for engineering desig
problems such as electric motors, transformers, indutiiating, metal forming, and rail-guns. A detailed, mathgrabanalysis
which justifies the approximation is given in [24].

A. TheA- Potential Formulation

The divergence condition (4) implies tHat= [ x AwhereA is a magnetic vector potential. This in turn implies thatehectric
field is given byE = —Op— %A’, where@is an electric scalar potential. Using these two potentiisg with the gauge condition
[)- oA = 0, the potential diffusion equations in a 3 dimensional dionGaare

O-olp = O (6)
o%A = —ﬁxiﬁxﬂ—oi(ﬁfs 7)
E = —ﬁ(p—g,& (8)

ot
B = OxA (9)
J = oE (10)

We refer toA andgas the primary field variables aijE, andJ as the secondary variables, with the computation of therskoy
variables optional. The inhomogeneous Dirichlet boundanditions are given by

® = @uronl (11)
AxA = Aanonl (12)

and in the Galerkin finite element method these will appearaastraints on the solution and will be satisfied exactly.e Th
inhomogeneous Neumann boundary conditions are given by

olp = JyonT (13)

Ax -0OxA = HanonTl (14)

Tl >

and in the Galerkin finite element method these will appeagasvalent sources and will be satisfied in the weak senseteTh
are divergence constraints on both the primary and secpfigais, namely

1

0.0 = 0 (15)

0. 0, (16)

o)

and these will be satisfied automatically by the discretiratnethod, no penalty term or projection step will be reedir

Il. FINITE ELEMENT DISCRETIZATION

FEMSTER is a class library of finite elements used for theltesa this paper, see [25], [26], [27] for details. It proesl
discrete numerical implementations of the concepts frdferdintial forms (tangent vectors, wedge product, extaterivative,
hodge-star operator, etc...). The language of differeftians has long been used for elucidating the laws of eletagnetics
in a coordinate system free manner [28] [29] [30]. We havenibthis language to be extremely useful in providing theralost
software foundation for FEMSTER. In standard finite elen@nguage, FEMSTER contains all the data structures anctpes
required to compute local finite element matrices: elem@atsahedrons, hexahedrons, prisms), basis functionsh@pe func-
tions), quadrature rules, linear forms, and bilinear farFEMSTER provides the gradient, curl, and divergence dapesaas well
as the div-grad, curl-curl, and grad-div operators. No&t #ubitrary partial derivative operators are not provjdesithese do not
fit nicely into the framework of differential forms, and fartately are not needed for computational electromagnéeTios basis



function class hierarchy contains four forms of basis fiomd, simply called 0-forms, 1-forms, 2-forms, and 3-forrserived
from each of these classes are sub-classes for the elenpesttgtrahedron, hexahedron, and prism, and derived frain &fa
these types is a further specialization for the degredseefdom, i.e. interpolatory, spectral, hierarchical, dtee critical step in
using FEMSTER is to decide which form should be used for eagiipal quantity. The essential properties of the formsare
summarized.

0-forms are continuous scalar basis functions that havellade®ned gradient. These basis functions are a finite sadespf
H(Grad) and are suitable for discretization of the electric pot#mgj temperaturd, etc. The basis functions are dimensionless,
hence the degrees-of-freedom have the same units as thédielgl approximated. If the field is temperature, the degoées
freedom have units of temperature. The gradient of a O-foagisbfunction can be represented, exactly, as a combination
1-form basis functions, i.edW° c W2,

1-forms are vector basis functions with continuous tarigenbmponents across elements, but discontinuous noronabo-
nents. They have a well defined curl, but do not have a well défdivergence. These basis functions are a finite subspace of
H(Curl) . The basis functions have unitsmf . For example, the electric field has unitswiflts/m and the degrees-of-freedom
will therefore have units dfolts Itis a simple matter to integrate 1-forms along the edgesroésh, but surface integrals are not
well defined. These basis functions are ideally suited ferelectric fieldE, the magnetic fieldH, the magnetic vector potential
A etc. The curl of a 1-form basis function can be represemteattly, as a combination of 2-form basis functions,d\&* c W2.
The null space of the curl operator on 1-forms is, exactlg, shace of gradients of O-formg\¥* = 0 impliesW?* = dW?, for
simply-connected regions.

2-forms are vector basis functions with continuous nornoahgonents across elements, but discontinuous tangeatigd@-
nents. They have a well defined divergence, but do not havdlalefened curl. These basis functions are a finite subspace of
H(Div) . The basis functions have unitsmf 2. For example the electric current density has unitAmiperegn?, therefore the
degrees-of-freedom have unitsAhpereslt is a simple matter to integrate 2-forms over surfacesraogah, but line integrals are
not well defined. These basis functions are ideally suitedhfe electric flux densityd, the magnetic flux densiti, current flux
densityJ, etc. The divergence of a 2-form basis function can be reptes, exactly, as a combination of 3-form basis functions.
The null space of the divergence operator on 2-forms is,tgx#loe space of curls of 1-forms.

3-forms are discontinuous scalar basis functions. Thelt bardifferentiated. They can be integrated over a volunug not
over a surface or a line. These basis functions are a finitspsae of.2. The basis functions have units wf 3. For example,
charge density has units@bulombgm?® and the degrees-of-freedom will therefore have uniGailombs These basis functions
are ideally suited for the electric charge dengityhe energy density, etc.

FEMSTER computes the following “mass”, “stiffness”, ancetivative” matrices, where the superscript 0, 1,2, 3 denotes
the degree of the form,

M) = LMMAMdQ (17)
S(a)y; = LMWANMQ (18)
D|(|+1)(C()ij — /Qadv\f /\ij|+l do (19)

Note that thed operator denote&radient Curl, or Divergence for | = 0,1,2, respectively. The “mass” matricés and the
“stiffness” matricesS are square and mdgforms tol-forms, the “derivative” matrice® are rectangular and mdgorms to

(I 4+ 1)-forms. Note thatr is the Hodge operator which map$orms to 3— I-forms, and is associated with material properties
such as electric conductivity and magnetic permeabilitgah be shown that

D| (| +1) — M |+1K | (|+1) (20)
4 _ (K|<|+1>>T MK (D) (21)
(22)

whereK'(*D) is a “topological derivative” matrix. This matrix is the digtization of the exterior derivative operambifrom
differential geometrydW! =W(+1) . This matrix depends upon the mesh connectivity, but ispeddent of the nodal coordinates.
It does not involve an integral over the element, and it dagsnvolve any material properties. While seemingly abgtriads
enormously valuable in practice. Given laform quantityX with basis function expansion

n
X=9 xW, (23)
2
and an(l + 1)-form quantityY with basis function expansion

n
(14+2)
Y=Y ywW' (24)
2,0



the exterior derivativeGradient Curl, Divergenceor | = 0,1 = 1, andl = 2, respectively) is given by

y =K!'(+x, (25)
It can be shown that

KK =0 (26)

K#K1?=0 (27)

which are the discrete versions @fdW') = 0. In terms of standard vector calculus, these matrix maticorrespond to the
identities0] x Of =0 andC- O x E =0, respectively. These identities are satisfied in the éiecsense, exactly (to machine
precision), for any mesh and any order basis function.

FEMSTER contains some additional miscellaneous funclitgnén some circumstances it is necessary to convettfanm to
a(3—1)—form, i.e. a Hodge-star operation. A classic example is eding a "cell-center” quantity to a "nodal” quantity. Iniou
finite element setting the Galerkin procedure prescribetsngular matrices of the form

HEC ) = [wi A do (29)
Q
which produces optimal (in the least-square error sensdyetstar operators for arbitrary order basis functions.

A. Semi-Discrete Potential Diffusion Equations

As per Table | we employ 0-form basis functions fgrl-form basis functions foA andE, and 2-form basis functions f@&
andJ, leading to the following basis functions expansions,

P(xy,zt) = inzolpi (t)W° (x,y.2) (29)
Axy.zt) = inzlla@(t)vq\/.l(x,yvz) (30)
E(xyzt) = Iia(t)wl(x,y,Z) (31)
Bxy.zt) = inzzlbi ()W (x.y,2) (32)
Jxy,zt) = inzzlji(t)wz(x,y,z) (33)

(34)

with x; theith degree-of-freedom for field. The integers0,n1, n2 refer to the dimensions of the discrgtdorm spaces, and for
lowest order basis functions these correspond to the nuailmesh nodes, edges, and faces, respectively.
We employ the Galerkin variational procedure to converiRBE's (6)-(10) to a semi-discrete system of equationsdirigl

Lo)v = ¢° (35)

M) 2 = Suta-D%0)v (36)
da

e = —KOlV—E (37)

b = K2a (38)

M2(cY)j = HZ2e (39)

where the matrices have been defined above. The divergensiaiats are given by

(D) a = 0 (40)
(D% (0))’e = 0 (41)
K® = 0 (42)



and from the identities (26) and (27) these constraintsrapdiditly satisfied for all time, assuming the initial cotidns and the
source terms are divergence free. The divergence cortst{did) and (41) are often referred to as “weak” or “variagilisince
they are derived from the integration-by-parts formula

/dF/\W:/F/\W—/F/\dW, 43)
Q r Q

whereF is the field of interest4 or E) andW is a “test function” which is zero on the bounddry These divergence constraints
are thus not enforced on the boundary, the divergence ofélus fon the boundary is determined by the the choice of Déich
and Neumann boundary conditions @randA as described above.

B. Boundary Conditions

The discrete version of the Dirichlet boundary conditio)(ik simply to constrain degree-of-freedom valagen the surface
to known values. In finite element terminology this isemsentiaboundary condition. Since thiefield update equation involves
the solution of a linear system, this constraint is part efratrix solve step. We briefly review our approach for impatng
essential boundary conditions here.

Consider then x n linear system of equationsx = b and assume that some subset of the solution ved®subject to point
constraints of the form; = q;,i = 1, m. For ease of presentation the solution veatts sorted into unconstrained and constrained
subvectors, in our application the unconstrained comptsramrespond to internal degrees-of-freedom and the inst com-
ponents correspond to boundary degrees-of-freedom. Btersyof equations can be written ink2 block form as

Ay Ag x| | b
[AIB ABB:| XB:|_|:bB:|' (44)
The approach is to modify the matrix and the right hand sidgorein a manner that preserves the symmetry of the original
system. The solution is given by
Ay O X | | bi—Aeq
Rt )

In practice, diagonally scaled conjugate gradient is éffe@t solving this system of equations.
The discrete version of the Neumann boundary condition i djfferent. In the Galerkin procedure integration-bytpas
performed on th€url-Curl operator,

/ Dxp’llilx,&-\TVdQ:/ u’l(Dxﬂ) . (IZI xW)dQ—%p’l(V_Vx Dxﬁ) -ndr. (46)
Q Q r
The surface integral can be expressed as
%u‘l(WxDxﬂ)-ﬁdl‘z—fﬁxHVle‘, (47)
r r

clearly this is an effective surface current soudggr = n x H that is added to the right hand side of (36). In finite element
terminology the special case f = 0 on the boundary is referred to asatural boundary condition, this is the boundary
condition that is naturally satisfied by the variationalnfiodation. It is also referred to as a weak boundary conditibis not
satisfied exactly but is instead satisfied only to within thpraximation error. In the section below a volume-to-scefantegral

is proposed to determin®andH on the boundary.

IV. BIOT-SAVART LAW
The law of Biot and Savart is given by

Ox &= 1 //J(x’)x(xfx)dQ,

H(x) = =—
) ) e v

1
. (48)

whereJ(X) is a known volume current density at the source peinandH (x) is the desired magnetic field at the observation
pointx. A related equation for the magnetic vector potentiad given by

N _ £ ‘T(X,) /
A =4 N lX_X/‘dQ. (49)

Equation (49) is the fundamental solution to the equafion 20 x A = J'in an infinite homogeneous medium. Technically,
equation (49) is the fundamental solution36A = —pJ, but since each individual conducting region is homogesgour gauge



condition] - 6A = o0+ A = 0 and the standard vector identififA = O (D-,&) — DOx Ox Aresults in equation (49). Equation

(48) follows directly fromH = p~10 x A. Note that if the problem of interest consisted of two diskintonductors touching each
other, the current densithwould be continuous but th&-field would posses a jump discontinuity due to our choiceanfge, and
0.-A#£0s0 (49) cannot be used. For these problems equation (4& redre appropriate boundary condition. In our application
we needH or A only on a surfacé. Also note that we assume thais a constant scalar over the entire problem, we restrict
ourselves to problems involving non-magnetic conductirggemals. Inhomogeneous magnetic materials could be ateddor
by adding effective surface currents on material intesabet this is not considered here.

Employing basis function expansions fbandH, multiplying by 1-form test functiongvl(x) and integrating over the surface
gives

M®h =Zj, (50)

whereh andj are vectors of degrees-of-freedom, and the matrices aea @iy

1 W2 (X) x (x—X) - W} (x)

Z; =/ = dQ'dr 51
N rJo4m x—x|? Gb)
ME = /rwl(x).\fxljl(x)dr. (52)

The matrixM* is a square “mass matrix” defined only over the surface, ixiseenely sparse and well-conditioned and is not an
issue computationally. The matrikis a completely full rectangular matrix that maps volumerents to surface fields. A similar
equation for thel-field field is given by

MSa=Yj, (53)

Yij = //Q,WZ _# X) dvdr (54)

The computation of the Biot-Savart matrices involves siagand near singular integrals. The surface integratipeiformed
using standard Gaussian quadrature points for each sweface=nt. The volume integration uses an adaptive integratile,
which varies the order of the Gaussian quadrature baseceatigtance between the source podrdnd the observation point
When the surface element containixg a face of the volume element containixiga highly accurate height-based singularity
cancellation quadrature rule is used [31].

Here we consider the coupling of the finite element equat{86)(39) with theA-field Biot-Savart equation (54). An implicit
backward-difference method is used for to update the degrE&reedonma andj simultaneously,

where

(MY (o) +atSt (u ) ans = M1(0)a,—AtDY (o) v+ Atjs (55)
Y12J'n+1—|\/|1<'=\n+1 =0 (56)
MMZj 1 +H2(0)an: = H2(0)a,— AtH2K v+ Atjs (57)

In the above equation the voltage and the independent ¢wwence are analytical functions evaluated at timtel/2. Note that
the third equation follows from the definition of total eléctcurrent density

sz(—%—D(p) + % (58)

It is instructive to express the update equation in matnirfoT he result is

(M(o)+atst(ut)) (Mi(o)+atst(ut)) 0 ar., [ Mi(o) Ml(o) O] [ a
0 MS -y .| = 0 0 Oof|a |+
H'2(o) H'%(0) AtM? (1) jn1 | H¥2(0) H'?(0) O in
—AtD% (o) v + Atjs
0 (59)
| —AtHY?(1) KO 4 Atjs |

The volumeA-field and the surfacé-field degrees-of-freedom have been separated for clafitis system of equations can be
solved using an iterative method such as GMRES. But as wititiis linear system is poorly conditioned. First, note #hand]
have different units, they differ by a factat/o. Therefore every column of the matrix that multipljeshould be scaled by/At.



Second, note that some of the matrix entries entries inwdi¥éo) while others involveM * (1). This can be fixed by scaling both
sides of the Biot-Savart law hy. This scaling can be written in standard preconditionemfas

Il 0 O (MY(o)+atst (pt))  (Mi(o)+atSt(pl)) 0 I 0 O
0 c 0 0 MS -Y o1 0 |. (60)
0 0 | H2(o) H2(o) AtM? (1) 0 0 o/At

For this method to be stable we must examine the eigenvafiiles amplification matrix. We do not present an analyticalybr
of stability, but we have numerically computed the compgseof eigenvalues of the amplification matrix for severabpems,
and with different values aft, and in each case the eigenvalues are within or on the uniechience the method is stable. The
eigenvectors corresponding to eigenvalues on the unitecda@respond to steady-state solutions of the diffusiamaéqns. It
should be noted that we investigated lagging the Biot-S&asarin time, i.e. replacing™ ! with j" in (56). This has the advantage
of moving the Biot-Savart matri¥ from the left hand side to the right hand side. Unfortunathly method was unstabfer
small time stepsThis method may be applicable if the goal is to quickly ressime steady state solution, but it is not applicable
if the goal of the simulation is to resolve the diffusion dgmes.

There is an issue with the independent current solizcé/e allow for this source because it is convenient for mampjems.
However this source cannot be arbitrary, it is a requirertieatt this current source be in the range of the p~10x operator.
For example, if the user specifies some curdgrt 0 x p~10 x F + &, whereF is arbitrary and € (range(0 x u*lmx)){ the
numerical solution will exhibit unbounded linear growtthig linear growth termunboundeds a solution of)ﬂ/at =9, and is not
an artifact of the proposed finite element method, it is advalathematical solution of the model equations. To elin@rhts,
care must be taken to ensure the independent current saidiestigence free.

V. Low-RANK QR ACCELERATION

In this section we develop the hierarchical low-rank QR agjpnation of dense matrices representing the Biot-Sawaav} |
the same algorithm is applicable to either (48) or (49). Tlgerithm has been implemented and tested on a parallel cmpu
consisting oK identical processors, e.g. a cluster of PC’s. For unipmsmesomputations the parametéican be considered an
arbitrary partitioning of the problem, e.g. the number ahpatational threads.

We assume that the volunig has been partitioned intd partitions, with each partition having an equal number dtine

elements. The volume elements are distributed via thetijoaitig. The surfac€ is also partitioned int& equally sized surface
partitions. Note however that the surface elements areistottaited via the surface partitions, each processor ceess the entire
surface mesh. The Biot-Savart matrix is then decomposediftx K block matrix, with every blockPY, pe {1:K},ge€ {1:K}
representing the interaction of surface partitionwith volume Qq. Theqth processor computes block8% p=1:K, i.e. a
column of blocks. Note that the matrix is decomposed via itjmring of elements, hence the matricg® are overlapping
in DOF space. For the highest-level partitioning of the edata we employ a graph-based algorithm [32]. This may not be
optimal for compression of the Biot-Savart matrix, but ibfgimal for the FEM part of the problem. Regardless of theipalar
partitioning algorithm, the key point is that if the pauitisI, and Qq are well-separated then the sub-ma## will have a
low-rank QR decomposition. The procedure for computingloerank QR decomposition is described in Section V-A below
We define “well-separated” as follows: the bounding sphésethe element partitions, andQq are computed, if the bounding
spheres do not intersect then the partitions are considerttdeparated and a low-rank QR representatiaiP8is computed. We
employ a recursive procedure for computii®f when partitiond” , andQq are not well-separated. This results in a hierarchical
representation faZ. If ', andQq are not well separate@y is divided into eight equally sized sub-partitiofis, is divided into
four equally sized sub-partitions, and the “well-sepatdtst” is applied to the sub-partitiols, andQqj, i=1:4,j =1:8.
A space-filling curve algorithm is used for creating the galtitions. The process is applied recursively, with a lawk QR
representation computed for well-separated sub-parsitidhe recursion is halted when a volume sub-partitionatostfewer
than some number of elements, for example 64 elements. Hedbwest level of recursion the interaction is not well seped,
it is simply represented by a dense matrix. This is illusileih Figure 1.

No parallel communication is required in the constructiéthe hierarchical Biot-Savart matrix, each processor hasete-
ments that it needs to perform the integrals. Each procéssothe same amount of work, hence the computation of thgraite
is load balanced. Note, however, that in the low-rank QR @xpration the rankk is computed dynamically, and the rakk
depends upon the geometry. Hence the application of tharklical Biot-Savart matrix, i.e. the matrix-vector mplitation
B = Z¢&, may not be perfectly load balanced. Also note that the egtidin of the hierarchical Biot-Savart matrix does require
parallel communication. This communication is as follo{4y:each processayrdoes a gather operation to get the values thiat
it needs, (2) each processpioops over the sub-matric&$9, p = 1 : K and computeq = ZP9%, (3) each processor participates
in a global reduction of.

A. Low-Rank QR Decomposition

Every matrixZ has a QR decompositiod,= QR, whereQ is a unitary matrix (orthonormal columns), and the maRiis an
upper triangular matrix. These QR decompositions are atand computational linear algebra as they are key stepshing
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Level 1
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Fig. 1. Hierarchical partitioning of the Biot-Savart matrikhe highest level of partitioning is based on the number o€gssors. Some of the the interactions
at anyLevel Iwill be full rank (black boxes), and these interactions are-partitioned by decomposing the corresponding sub-volamaesub-surface to create
Level I+1

least-squares problems and eigenvalue problems. Giverirxidathere are well known algorithms such as Householder, fast
Givens, and modified Gram-Schmidt for computing the QR demsition [33]. For our application, when, andQq are well
separated the matrixP9 will have a low-rank decomposition

Zn ~ Qmick X R, (61)

wherek is the rank. Clearly, ifnandn are large andt is small, the QR decomposition represents a significant cesspn of the
matrix. We do not want to form the enti?® and then compress it, rather we sample the matrix by pickiogvs and columns
of ZPY, wheres is some predetermined number based on an estimate of the Saveral algorithms have been proposed for
picking the sampled rows and columns. The procedure foimiake sampled rows and columns is ad hoc, the procedurevéhat
employ is described in Section V-B below, and is similar tcakgorithm that has been successfully applied to electiiogtil]
and frequency-domain [22] boundary integral equationse Jdmpling procedure is solely linear algebra, the impldatiem is
independent of the particular Green’s function, finite edefrbasis functions, etc. and hence can be used for eithpo(§b4).
Note that while thdmplementatiorof the low-rank QR algorithm is independent of the particitaeen’s function and finite
element basis functions, tiperformanceof the algorithm does indeed upon these particulars. Forrdow QR algorithm to be
robust we must havegreater than the expected rank, i.e. we over-sample theSzeart matrix. The algorithm for computing
Qmxk andRyxn, is as follows:
1: Form the sampled column mati$,, ; and the sampled row matrgg, ,,.
2 Compute the rank-revealing QR decompositi@f.sRsxs = S&.s Using LAPACK routines DGEQPF and DORGQR.
The LAPACK subroutine library is public domain and is deBed in [34]. The rankk is determined by the criteria
Ru < threshRy; wherethreshis a threshold value. Keep onkycolumns ofQ, denote this amxk, and discard.

3: Form a new matri;ésxk by takings rows of Qnmyk, the exact same rows as used to const8ict

4: Compute the least-squares solutior@ngkan =4, using LAPACK routine DGELSS.

At this point we have the desired matric®g.x andRgxn which approximateZ,ﬁ’q‘ln. To perform a matrix-vector multiplication
with the compressed matrix it is necessary to include thenptations due to the column and row sampliBi} , =~ P® x Qmyxk X

Rkxn x P", whereP" andP°® are permutation matrices. The quality of the approximatmm the amount of compression (the rank
k), are determined by the value thfreshused in Step 2 above. Our approach, being based on highlg tukRACK routines, is
efficient both in terms of FLOPS and memory usage. The coriipleka single QR decomposition 8(m-s) + O(s- n), using a
fixed value ofsyields a linear complexity im andn. In our particular implementation the cost of computing shenpled rows

and columns dominates over the cost of the LAPACK routinelsis Bbviously depends upon the accuracy of the quadratures
employed and on the data structures used to access the &dear@mhhence may not be true in all implementations.

The two key parameters in the QR decomposition are the tblesised to determine the rakkn Step 2, and the number of
sampled rows and columissn step 1. In practice we have foundQ < thresh< 0.001 to yield acceptable results, meaning the
the error in the QR compression is less than the intrinsioref the finite element computation. Of course this is appion
dependent. For the paramesawre use a table look-up, where the argument is the normalistdnte between the volume and
surface regions. This normalized distance is defined asistende between the centroids of the two bounding sphevitediby
the sum of the radii of the spheres, a valuelet 1 means that the two bounding spheres are just touching. I& ¢dilcomputed
ranks vs. distance, generated by running a dozen differebtgms, is shown in Figure 2.

B. Row and Column Sampling

The procedure for computing the sample row mafx, and column matrixs;,, < is important, the goal is to pick the most
independent rows and columns. An ad hoc procedure that weeksis described here. The process is initiated by simply
computing the first, middle, and last rowZﬁX]‘ln, and the first, middle, and last column. These will be indeahbased on the
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Fig. 2. Rank vs distance. The Black curve is the maximum rankciwis used to determing The Gray curve is the minimum rank. This data is faheeshof
0.001.

fact that the volume and surface elements are sorted viacagiang curve. The general step for computing a new rowegs
previously computed rows and columns, is as follows:

Define the matrids.s as the intersection &, ,, andS;, <.

Define the vectok; as theith row of S, .

Define the vectoyj as thejth row of Tgys.

Define the anglé;; as the angle between vectotsandV;.

The next row to compute is given the integetefined bymax—1.n (Minj—1:s6;j), i.e. find the vectolX; that is “most
different” from all vectorsv;.

This procedure scans the existing sampled data and detssrmilgood candidate for the next row to compute. The same
procedure is used for determining what column to computé Wg& do not claim that the procedure is optimal, in fact thesom
for requiring oversampling, i.es > k, is that the sampling procedure is imperfect. If we employedk, wherek was the actual
rank, the low-rank QR approximation would likely not satifffie required error tolerandbresh

VI. COMPUTATIONAL RESULTS
A. Spherical Shell of Current

In this section Equation (59) is solved for an eddy currepobfam with an exact analytical solution to verify the vatjdof
the approach. For this verification experiment we consttiuetexact solution to the problem of a spherical shell of entr
There exists a well-known exact analytical solution to thebfem of computing the magnetlc fieRldue to a sphere of uniform
magnetizatiorM, i.e. a spherical magnet [35]. THefield due to a given magnetizatidv is given by

Y D xMX) M(xX') x i
A(x) _/\/7d>(+?§s7da( (62)

x—x| x—x]

Note that in the first termil’ x M(x) is an effective volume current density, and in the seconuh tdi(x) x i is an effective
surface current density. Therefore the problem of a spHargiform M is equivalent to the problem of an infinitely thin spherical
shell of current. We begin with this solution, and we integnaith respect to to obtain the solution to a finite thickness spherical
shell of uniform current density. In spherical coordinafe$®, @} the current source is given by

Jr = 0
r<a 0
J = a<r<b Msing)
r>b 0
and the steady-stafefield is given by
A-=0
r<a Mpsir(q))rba
_ (4b—3r)
Ae = a<r<b Mpsw((p)T
r>b M u sin(@) bi;’;‘
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wherea andb denote the inner and outer radii of the spherical shell,eetyely. A time-dependent solution can be created by
constructing a current source that smoothly ramps up totdealg-state value. In this verification simulation we userdmp

function
R(t)::—2L<Erf [n <%—1)]+1> (63)

whereEr f denotes the Error Function. If we I andAg denote the steady-state solution, then the full time-dégeinsolution
is given by

Ao(t) = AeR(t) (64)

B) = BR) oA DV (65)
We usep = 407 ando = 10’ in the spherical shell. We choose= 4.0 andt = 1.0s for the ramp function. The initial
condition isA = 0, this is acceptable since the exAdield is essentially zero due to our choice of ramp functiaremeters. The
spherical shell haa= 0.8mandb = 1.0m. The computational mesh had a total of 6000 elements, tfos tke metal region only,
as the fields in the air are accounted for by the Biot-Savart e usedAt = 101 for 100 time steps. The GMRES algorithm
was used to solve the linear system at each time step, andxapjately 330 iterations were required for a tolerance off10
Figure 3 shows the geometry and the computational mesh,agéittion removed so that the interior can be seen. Figures 4
and 5 show a slice of the steady-statéield andB-field, respectively. Figures 6 and 7 show a slice of the thadt-statd-field
vectors andB-field L, error, respectively. The peak relative error (error engrglyelement divided by energy per element) was
0.001, and the total relative error (total error energydid by total energy) was 18, which is excellent. Figure 8 shows the
source current, the eddy current, and the total currentusensie for a particular mesh element. The chosen time/step10-1
was significantly less than the diffusion tirpeL? ~ 3.0s. This was not required for stability, as the method is unéooally
stable, rather this was required in order for the computety edirrents to be time-accurate. Finally, Figure 9 showstithe
history of the computed-field versus the exadt-field for a selected mesh element, note that the agreemextéglent.

Fig. 3. The computational mesh of the spherical shell, withriggoremoved for clarity.

B. Coaxial Rings

This computational experiment is of a set of three coaxiaiainéngs, this experiment verifies the performance of the pr
posed algorithm for multiple conductors. The middle ringliven with a prescribed electric current density, whicherates a
magnetic field, which in turn induces eddy currents in theepttonductors. This problem does not possess an exactiaablyt
solution, instead we compare the Biot-Savart approach e finite element approach that employs meshing a largerregi
air surrounding the conductors. The air region extends alistance of 4 radii. The air region is large enough so that are ¢
assumen x A = 0 on the outer boundary. The computational mesh is showrgiar&i10. We usef = 40~ ando = 10’ for
the metal rings. For the FEM with Air approach we solved (3&ihg a value ob = 1.0 in the air.



12

Z Axis

Fig. 4. Slice showing the steady-stadield magnitude. Fig. 5. Slice showing the steady-st&tdield magnitude.

For each case all the fields were initialized to zero. Thelpralwas driven by a constant current density in the middig o

Jr = 0
J = 10
‘]Z = 0

that was turned on at= 0. For each case a time stepAif= 0.1 was used for 300 steps.

The steady stat@-field andB-field are shown for the FEM with Air model in Figure 11 and Figu2. These results are
compared to the steady-state results for the Biot-Savarbagh. Examining the numerical value of the fields in theaffer the
two cases, the worst case difference between the two caset69a which is very good. It is quite possible that the FEM with
Biot-Savart law is the more accurate result, as this modes dot force the fields go to zero after a distance of 4 radii.

At early times there are large eddy currents in the ringstat times the eddy currents decay to zero, leaving no duirréne
top and bottom ring and constant current in the middle rirfge @omputed currents are shown in Figure 13, with excellgrgea
ment between the FEM with Air approach and the Biot-Savasta@gch. TheB-field increases with the expectéti— exp—at))
rise time as shown in Figure 14, again with excellent agredimetween the two methods.

The FEM With Air mesh consisted of 2064384 elements, and tbblem was solved using 64 parallel processors. For the
FEM With Air approach there were over 7 million degrees+afeflom, diagonally scaled Conjugate Gradient was usedue so
the linear system with on average 650 iterations per time St@e Biot-Savart approach required meshing only the nmiztgs
using 20736 elements. There were fewer than 70000 degfdemedom, GMRES was used to solve the linear system with on
average 390 iterations per time step. The Biot-Savart matas a dense 27648 x 69120 matrix that was compressed byoa fact
of 52x using the hierarchical low-rank QR compression of Secti@nA threshold of 1.0e-3 was used for the QR compression.
It is interesting to note that the hierarchical QR decomjmmsiresulted in 832 dense matrices (near interactions)384@ QR
matrices (far interactions), these with an average rank5of The memory usage was balanced at approximately 30MWords
for both the dense and the QR matrices. This indicates tlcatasing the QR threshold, while compressing the QR matrice
further, would not have a significant impact on the overathpeession. It is difficult to directly compare the CPU times the
two different methods, since the FEM With Air problem was nm64 processors while the Biot-Savart approach was run on
12 processors. Defining the total time as (wall clock tim@umber of processors) the Biot-Savart approach was kb#tarax
faster. If we were to employ the Biot-Savart approach withiba heirarchical low-rank QR compression, it would be Biganlty
more expensive then the FEM With Air approach due to the d2ri6d8 x 69120 matrix. Examining the computational cost of
computing the heirarchical low-rank QR decomposition irrendetail, we note that the cost of the LAPACK subroutineg§St
2,3, and 4 in Section V-A) represented only 3% of the CPU tithe,bulk of the CPU time is spent in computing the sampled
row and column matrices (Step 1 in Section V-A). SamplingBla#-Savart matrix is expensive to compute partly due totigh
accuracy quadrature rules we employ, and partly due tasitrinefficiencies of the C++ Standard Template Libaryirms that
are employed to provide mappings between degrees-ofdne@d elements.
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The error is largest where the field varies most rapidly, agebgal. The
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Fig. 8. A time-history plot of thed-components of the currents for a Fig. 9. A time-history plot of the compute&Hield and the exadh-field
selected mesh element in the middle of the shell. As the indepeiodr- for a selected mesh element in the middle of the shell, showingllext
rent source ramps up, so does the induced eddy current bt a@pfiosite agreement and verifying the validity of the approach.

direction.

C. Additional QR Results

The results in Section VI-A and Section VI-B demonstrate tha implicit hybrid finite element Biot-Savart algoriths &n
accurate method for solving transient eddy current probldmthis section we summarize additional results on théopaance
of the hierarchical low-rank QR compression of the Biot-&@#awmatrix. In [20] [21] [23] it is argued that a single-lev@R approx-
imation isO(N'®) and a multilevel QR is asymptoticall@(Nlog(N)). While we use a slightly different partitioning algorithm
due to our desire for a simple parallelization, we shoulceekpomparable performance. We ran 16 different simulaticanging
from 3000 to 450000 volume unknowns. These simulationsistatsof four problems (spherical shell, coaxial rings, fla¢et
metal, generic railgun) at four mesh resolutions each. &b @aoblem was refined the number of processors was incréased
yield a fixed number of mesh elements per processor. Therpafece of the hierarchical QR algorithm for these problesns i
shown in Figure 15 and Figure 16. In Figure 15 and Figure 1&6XRecompressed results are the actual measured memory usage
and CPU time, respectively, whereas the uncompressedgsesel theoretical since the memory usage for the largedgreb
without QR compression was prohibitive. There is variatiorihe results due to differences in geometry and the number o
parallel processors, but the overall conclusion is ourritlgm is competitive with othe®(Nlog(N)) algorithms.
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Fig. 10. The computational mesh of the coaxial rings problenteNuat only the metal is shown, for the FEM with Air model the comagpional mesh was
extended out to a distance of 4 ring radii.

VIl. CONCLUSIONS

A novel numerical method for the multiply connected transieddy current problem has been derived, implemented, and
verified. The algorithm consists of the H(Curl)-conformfimite element discretization of th— @ eddy current PDE, combined
with a Biot-Savart law to specify the global boundary comis on the conductors. The discrete Biot-Savart law isasgmted
by a dense matrix that maps volume current to surface fieldis. dense matrix is compressed using a hierarchical low-GR
compression. The coupled system of equations is solvedditiyplising the iterative GMRES method, and a scaling isjosed
that significantly improves the conditioning of the systefrequations. The numerical method was verified by comparing t
an exact analytical solution for a simple spherical prohlamd by comparing to a traditional finite element method farae
complex problem. The method is very accurate and reasorefityent. In our present implementation there is no motion,
and hence the cost of computing the low-rank QR approximaifdhe Biot-Savart law is amortized over many time steps. Fo
applications involving moving conductors, further optzation would be required, in particular the cost of compythre sampled
rows and columns of the Biot-Savart matrix.



13.0
1z.0
11.0
Z Axis
10.0

9.0

8.0

0.0 1.0 2.0 3.0 4.0 5.0
X Axis

Fig. 11. A-field contour for the FEM with Air model. The plot is a slice
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shown.
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Fig. 13. A time-history plot of the currents for the coaxialgiproblem.
The solid line denotes the computed solution using the FEM \Ait,
the glyphs denote the computed solution using the Biot-$#war The
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Fig. 14. A time-history plot of th&-field for the coaxial ring problem.
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