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A QR Accelerated Volume-to-Surface Boundary
Condition for the Finite Element Solution of Eddy

Current Problems
Daniel A. White, Benjamin J. Fasenfest, Robert N. Rieben, and Mark L. Stowell

Abstract

We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation
on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient compu-
tational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary
condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary
condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be
accelerated via a low-rank QR approximation of the discretized Biot-Savart law.

Index Terms

Maxwell’s equations, computational electromagnetics, low-rank approximation, Biot-Savart law, eddy currents, electromagnetic
diffusion, parallel processing.

I. I NTRODUCTION

In this paper, we present a finite element method for solving the multiply connected eddy current problem. While much of this
presentation is applicable towards frequency-domain analysis, our emphasis here is on transient simulation. Variousformulations
for the eddy current equations exist and have been extensively reviewed and studied in the literature. These include formulations
which solve for the electric field (the~E field formulation) [1], [2], [3], the magnetic field (the~H field formulation) [4], [5] or
for the potential field (the~A-φ potential formulation) [6], [7], [8], [9]. Each formulation has its advantages and disadvantages
for problems in computational electromagnetics. However,it has been shown that when usingH(Curl) andH(Div) conforming
finite element methods there is no difference inaccuracyfor these three formulations, even for secondary quantities such as~B
and~J [10]. The difference between the three formulations, whichuse primary field variables~E,~H, and~A, respectively, is in the
boundary conditions and the source terms, and is therefore simply a matter of which formulation is most convenient for a given
electromagnetics problem.

The most difficult electromagnetic diffusion problems encountered in practice are those that involve multiple conductors sep-
arated by a non-conducting region, the so-called multiply connected eddy current problem. While the currents are zero inthe
non-conducting region clearly the fields are not, and some method must be used to account for these fields. One approach is to
simply mesh the non-conducting region and use a small value of conductivity in this region. While seemingly a crude approach,
it works well in practice for many problems, for example using a conductivity at least 103 times smaller than the metal results in
fields correct to within the discretization error [7] [11]. The difficulty with this is twofold; one is the large number of unknowns
and the second is matrix ill-conditioning. More sophisticated approaches include forming a magnetostatic problem in the non-
conducing region using either the vector or scalar magneticpotential and coupling the two finite element solutions [6] [12], or
employing a surface integral equation to correctly model the global boundary condition [1] [2] [13].

In the context of Galerkin approximations of electromagnetics PDE’s, the choice of the finite element space plays a crucial
role in the stability and convergence of the discretization. For instance, in numerical approximations of the magneticand electric
field intensities,H(Curl) conforming finite element spaces (or edge elements) are preferred over traditional nodal vector spaces
since they eliminate spurious modes in eigenvalue computations and they prevent fictitious charge build-up in time-dependent
computations. The lowest orderH(Curl) conforming basis functions were developed by Whitney [14] before the advent of
finite element programs. Arbitrary order versions were introduced by Ńed́elec [15], [16] as a generalization of the mixed finite
element spaces introduced by P.A. Raviart and J.M. Thomas [17] for H(Div) conforming methods. Application of theseH(Curl)
andH(Div) basis functions toward electromagnetics is becoming quitepopular and applications can be found in several recent
textbooks [18], [5], [19]

In this paper we focus on the~A field formulation for the eddy current problem usingH(Curl) basis functions. We assume
a given initial condition (which may be zero) and the problemis driven by either a time-varying voltage or a prescribed time-
varying current. We allow for multiple conducting regions separated by air. Each individual conducting region is assumed to be

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48

Defense Sciences Engineering Division, Lawrence LivermoreNational Laboratory,white37@llnl.gov



DRAFT

2

homogeneous. The conductors are non-magnetic. Our targeted applications which satisfy these assumptions include induction
heating, metal forming, and helical magnetic flux compression generators. Boundary conditions must be applied on the conductor
surfaces, and here we propose to compute the surface~A field (for the inhomogeneous Dirichlet condition) or~B field (for the
inhomogeneous Neumann condition) by a direct discretization of the Biot-Savart law. Compared to surface integral equation
methods this approach does notsolvean integral equation, only theevaluationof an integral is required. We do not solve
for surface currents and hence need not be concerned with loop-star or spanning-tree processing for suppression of irrotational
surface currents. The disadvantage of the Biot-Savart law approach is that it requires a volume-to-surface computation and hence
can be expensive. But this computation can be accelerated using a low-rank QR approximation. Low-rank QR approximation
has been demonstrated to be effective at accelerating a variety of electromagnetic integral equations [20] [21] [22] [23]. We do
not prove that the low-rank QR approximation is superior to multipole expansions, panel methods, or other accelerationschemes;
we employ the low-rank QR approximation because the algorithm is independent of the Green’s function and can thus be applied
to either form of the Biot-Savart law. Our proposed boundarycondition algorithm is verified by comparing to exact analytical
solutions and by comparing to simply using a large mesh of theair/vacuum region.

II. ELECTROMAGNETIC DIFFUSION EQUATION

When working with multiple finite element spaces, it becomes convenient to use the notation of differential forms as a way
of categorizing the various field quantities from Maxwell’sequations and the subsequent finite element spaces used to discretize
them. In addition, the calculus of differential forms provides the necessary transformation rules which allow complicated basis
functions to be derived on a reference element and then mapped to global mesh elements. Table I lists various physical quantities
in electromagnetics and their associated differential form.

Physical Quantity Units Diff. Form

Scalar Potential,φ Volts/m0 0-form
Vector Potential,~A Webbers/m1 1-form
Electric Field Intensity,~E Volts/m1 1-form
Magnetic Field Intensity,~H Amperes/m1 1-form
Electric Flux Density,~D Coulombs/m2 2-form
Magnetic Flux Density,~B Webbers/m2 2-form
Electric Charge Density,ρ Coulombs/m3 3-form

TABLE I
ELECTROMAGNETIC QUANTITIES AND THEIR ASSOCIATED DIFFERENTIAL FORMS

In electromagnetics we have the electric and magnetic fields~E, ~H, the electric and magnetic flux densities~D, ~B, and the
constitutive relations

~D = ε~E
~B = µ~H

Here we write Maxwell’s Equations in terms of~E and~B,

ε
∂~E
∂t

= ~∇×
1
µ
~B−σ~E− ~Js (1)

∂~B
∂t

= −~∇×~E (2)

~∇ · ε~E = 0 (3)

~∇ ·~B = 0 (4)

with appropriate boundary conditions and initial conditions understood. Note that~Js is an independent current source term, which
may or may not exist for every problem. In all of our subsequent formulations, the material propertiesε,µ,σ are free to be
symmetric positive definite tensor functions of space, but we impose the restriction that they are linear time invariant.
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Now consider solving Maxwell’s Equations within a good conductor. A good conductor is defined by the condition

ε
∂~E
∂t

≪ σ~E. (5)

Note that (5) depends not only on the material propertiesσ and ε, but also on the time rate of change of~E. When (5) is
satisfied, Maxwell’s equations can be simplified by neglecting theε ∂~E

∂t term altogether, the so-called low-frequency approximation,
diffusion approximation or eddy-current approximation. The diffusion approximation is not valid for most RF, microwave, or
optics problems, but is reasonable for low-frequency EM waves in plasmas or in the earth, as well as for engineering design
problems such as electric motors, transformers, inductionheating, metal forming, and rail-guns. A detailed, mathematical analysis
which justifies the approximation is given in [24].

A. The~A-φ Potential Formulation

The divergence condition (4) implies that~B=~∇×~A where~A is a magnetic vector potential. This in turn implies that theelectric
field is given by~E =−~∇φ− ∂

∂t
~A, whereφ is an electric scalar potential. Using these two potentials, along with the gauge condition

~∇ ·σ~A = 0, the potential diffusion equations in a 3 dimensional domain Ω are

~∇ ·σ~∇φ = 0 (6)

σ
∂~A
∂t

= −~∇×
1
µ
~∇×~A−σ~∇φ+ ~Js (7)

~E = −~∇φ−
∂
∂t

~A (8)

~B = ~∇×~A (9)
~J = σ~E (10)

We refer to~A andφ as the primary field variables and~B, ~E, and~J as the secondary variables, with the computation of the secondary
variables optional. The inhomogeneous Dirichlet boundaryconditions are given by

φ = φsur f on Γ (11)

n̂×~A = Atan on Γ (12)

and in the Galerkin finite element method these will appear asconstraints on the solution and will be satisfied exactly. The
inhomogeneous Neumann boundary conditions are given by

n̂·σ~∇φ = Jn on Γ (13)

n̂×
1
µ
~∇×~A = Htan on Γ (14)

and in the Galerkin finite element method these will appear asequivalent sources and will be satisfied in the weak sense. There
are divergence constraints on both the primary and secondary fields, namely

~∇ ·σ~A = 0 (15)
~∇ ·~B = 0, (16)

and these will be satisfied automatically by the discretization method, no penalty term or projection step will be required.

III. F INITE ELEMENT DISCRETIZATION

FEMSTER is a class library of finite elements used for the results in this paper, see [25], [26], [27] for details. It provides
discrete numerical implementations of the concepts from differential forms (tangent vectors, wedge product, exterior derivative,
hodge-star operator, etc. . . ). The language of differential forms has long been used for elucidating the laws of electromagnetics
in a coordinate system free manner [28] [29] [30]. We have found this language to be extremely useful in providing the abstract
software foundation for FEMSTER. In standard finite elementlanguage, FEMSTER contains all the data structures and operations
required to compute local finite element matrices: elements(tetrahedrons, hexahedrons, prisms), basis functions (orshape func-
tions), quadrature rules, linear forms, and bilinear forms. FEMSTER provides the gradient, curl, and divergence operators, as well
as the div-grad, curl-curl, and grad-div operators. Note that arbitrary partial derivative operators are not provided, as these do not
fit nicely into the framework of differential forms, and fortunately are not needed for computational electromagnetics. The basis
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function class hierarchy contains four forms of basis functions, simply called 0-forms, 1-forms, 2-forms, and 3-forms. Derived
from each of these classes are sub-classes for the element types tetrahedron, hexahedron, and prism, and derived from each of
these types is a further specialization for the degrees-of-freedom, i.e. interpolatory, spectral, hierarchical, etc. The critical step in
using FEMSTER is to decide which form should be used for each physical quantity. The essential properties of the forms arenow
summarized.

0-forms are continuous scalar basis functions that have a well-defined gradient. These basis functions are a finite subspace of
H(Grad) and are suitable for discretization of the electric potential φ, temperatureT, etc. The basis functions are dimensionless,
hence the degrees-of-freedom have the same units as the fieldbeing approximated. If the field is temperature, the degrees-of-
freedom have units of temperature. The gradient of a 0-form basis function can be represented, exactly, as a combinationof
1-form basis functions, i.e.dW0 ⊂ ~W1.

1-forms are vector basis functions with continuous tangential components across elements, but discontinuous normal compo-
nents. They have a well defined curl, but do not have a well defined divergence. These basis functions are a finite subspace of
H(Curl) . The basis functions have units ofm−1. For example, the electric field has units ofVolts/m and the degrees-of-freedom
will therefore have units ofVolts. It is a simple matter to integrate 1-forms along the edges ofa mesh, but surface integrals are not
well defined. These basis functions are ideally suited for the electric field~E, the magnetic field~H, the magnetic vector potential
~A, etc. The curl of a 1-form basis function can be represented,exactly, as a combination of 2-form basis functions, i.e.d~W1 ⊂ ~W2.
The null space of the curl operator on 1-forms is, exactly, the space of gradients of 0-forms,d~W1 = 0 implies~W1 = dW0, for
simply-connected regions.

2-forms are vector basis functions with continuous normal components across elements, but discontinuous tangential compo-
nents. They have a well defined divergence, but do not have a well defined curl. These basis functions are a finite subspace of
H(Div) . The basis functions have units ofm−2. For example the electric current density has units ofAmperes/m2, therefore the
degrees-of-freedom have units ofAmperes. It is a simple matter to integrate 2-forms over surfaces of amesh, but line integrals are
not well defined. These basis functions are ideally suited for the electric flux density~D, the magnetic flux density~B, current flux
density~J, etc. The divergence of a 2-form basis function can be represented, exactly, as a combination of 3-form basis functions.
The null space of the divergence operator on 2-forms is, exactly, the space of curls of 1-forms.

3-forms are discontinuous scalar basis functions. They can’t be differentiated. They can be integrated over a volume, but not
over a surface or a line. These basis functions are a finite subspace ofL2. The basis functions have units ofm−3. For example,
charge density has units ofCoulombs/m3 and the degrees-of-freedom will therefore have units ofCoulombs. These basis functions
are ideally suited for the electric charge densityρ, the energy densityε, etc.

FEMSTER computes the following “mass”, “stiffness”, and “derivative” matrices, where the superscriptl = 0,1,2,3 denotes
the degree of the form,

M l (α)i j =
Z

Ω
αWl

i ∧Wl
j dΩ (17)

Sl (α)i j =
Z

Ω
αdWl

i ∧dWl
j dΩ (18)

Dl(l+1)(α)i j =
Z

Ω
αdWl

i ∧Wl+1
j dΩ (19)

Note that thed operator denotesGradient, Curl, or Divergence, for l = 0,1,2, respectively. The “mass” matricesM and the
“stiffness” matricesS are square and mapl -forms to l -forms, the “derivative” matricesD are rectangular and mapl -forms to
(l + 1)-forms. Note thatα is the Hodge operator which mapsl -forms to 3− l -forms, and is associated with material properties
such as electric conductivity and magnetic permeability. It can be shown that

Dl(l+1) = M l+1K l(l+1) (20)

Sl =
(

K l(l+1)
)T

M l+1K l(l+1) (21)

(22)

whereK l(l+1) is a “topological derivative” matrix. This matrix is the discretization of the exterior derivative operatord from
differential geometry,dWl =W(l+1). This matrix depends upon the mesh connectivity, but is independent of the nodal coordinates.
It does not involve an integral over the element, and it does not involve any material properties. While seemingly abstract, it is
enormously valuable in practice. Given anl -form quantityX with basis function expansion

X =
n

∑
i=1

xiW
l
i , (23)

and an(l +1)-form quantityY with basis function expansion

Y =
n

∑
i=1

yiW
(l+1)
i , (24)
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the exterior derivative (Gradient, Curl, Divergencefor l = 0, l = 1, andl = 2, respectively) is given by

y = K l(l+1)x. (25)

It can be shown that
K12K01 = 0 (26)

K23K12 = 0 (27)

which are the discrete versions ofd(dWl ) = 0. In terms of standard vector calculus, these matrix relations correspond to the
identities~∇×~∇ f = 0 and~∇ ·~∇× ~F = 0, respectively. These identities are satisfied in the discrete sense, exactly (to machine
precision), for any mesh and any order basis function.

FEMSTER contains some additional miscellaneous functionality. In some circumstances it is necessary to convert anl -form to
a (3− l)−form, i.e. a Hodge-star operation. A classic example is converting a ”cell-center” quantity to a ”nodal” quantity. In our
finite element setting the Galerkin procedure prescribes rectangular matrices of the form

Hp(3−l)
i j =

Z

Ω
Wl

i ∧W(3−l)
j dΩ (28)

which produces optimal (in the least-square error sense) Hodge-star operators for arbitrary order basis functions.

A. Semi-Discrete Potential Diffusion Equations

As per Table I we employ 0-form basis functions forφ, 1-form basis functions forA andE, and 2-form basis functions forB
andJ, leading to the following basis functions expansions,

φ(x,y,z, t) =
n0

∑
i=1

pi (t)~W0
i (x,y,z) (29)

~A(x,y,z, t) =
n1

∑
i=1

ai (t)~W1
i (x,y,z) (30)

~E (x,y,z, t) =
n1

∑
i=1

ei (t)~W1
i (x,y,z) (31)

~B(x,y,z, t) =
n2

∑
i=1

bi (t)~W2
i (x,y,z) (32)

~J(x,y,z, t) =
n2

∑
i=1

j i (t)~W2
i (x,y,z) (33)

(34)

with xi the ith degree-of-freedom for fieldX. The integersn0,n1,n2 refer to the dimensions of the discretep-form spaces, and for
lowest order basis functions these correspond to the numberof mesh nodes, edges, and faces, respectively.

We employ the Galerkin variational procedure to convert thePDE’s (6)-(10) to a semi-discrete system of equations, yielding

S0(σ) v = g0 (35)

M1(σ)
∂a
∂t

= −S1(µ−1) a−D01(σ) v+ j (36)

e = −K01 v−
∂a
∂t

(37)

b = K12 a (38)

M2(σ−1) j = H12 e (39)

where the matrices have been defined above. The divergence constraints are given by

(

D01(σ)
)T

a = 0 (40)
(

D01(σ)
)T

e = 0 (41)

K23b = 0 (42)
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and from the identities (26) and (27) these constraints are implicitly satisfied for all time, assuming the initial conditions and the
source terms are divergence free. The divergence constraints (40) and (41) are often referred to as “weak” or “variational” since
they are derived from the integration-by-parts formula

Z

Ω
dF∧W =

Z

Γ
F ∧W−

Z

Ω
F ∧dW, (43)

whereF is the field of interest (A or E) andW is a “test function” which is zero on the boundaryΓ. These divergence constraints
are thus not enforced on the boundary, the divergence of the fields on the boundary is determined by the the choice of Dirichlet
and Neumann boundary conditions onΦ andA as described above.

B. Boundary Conditions

The discrete version of the Dirichlet boundary condition (12) is simply to constrain degree-of-freedom valuesai on the surface
to known values. In finite element terminology this is anessentialboundary condition. Since the~A-field update equation involves
the solution of a linear system, this constraint is part of the matrix solve step. We briefly review our approach for implementing
essential boundary conditions here.

Consider then×n linear system of equationsAx = b and assume that some subset of the solution vectorx is subject to point
constraints of the formxi = qi , i = 1,m. For ease of presentation the solution vectorx is sorted into unconstrained and constrained
subvectors, in our application the unconstrained components correspond to internal degrees-of-freedom and the constrained com-
ponents correspond to boundary degrees-of-freedom. The system of equations can be written in 2×2 block form as

[

AII ABI

AIB ABB

][

xI

xB

]

=

[

bI

bB

]

. (44)

The approach is to modify the matrix and the right hand side vector in a manner that preserves the symmetry of the original
system. The solution is given by

[

AII 0
0 I

][

xI

xB

]

=

[

bI −AIBq
q

]

. (45)

In practice, diagonally scaled conjugate gradient is effective at solving this system of equations.
The discrete version of the Neumann boundary condition (14)is different. In the Galerkin procedure integration-by-parts is

performed on theCurl-Curl operator,
Z

Ω
∇×µ−1∇×~A· ~WdΩ =

Z

Ω
µ−1

(

∇×~A
)

·
(

∇× ~W
)

dΩ−
I

Γ
µ−1

(

~W×∇×~A
)

· n̂dΓ. (46)

The surface integral can be expressed as
I

Γ
µ−1

(

~W×∇×~A
)

· n̂dΓ = −
I

Γ
n̂× ~H · ~WdΓ, (47)

clearly this is an effective surface current source~Je f f = n× ~H that is added to the right hand side of (36). In finite element
terminology the special case of~H = 0 on the boundary is referred to as anatural boundary condition, this is the boundary
condition that is naturally satisfied by the variational formulation. It is also referred to as a weak boundary condition, it is not
satisfied exactly but is instead satisfied only to within the approximation error. In the section below a volume-to-surface integral
is proposed to determine~A and~H on the boundary.

IV. B IOT-SAVART LAW

The law of Biot and Savart is given by

~H (x) =
1
µ

∇×~A =
1
4π

Z

Ω′

~J(x′)× (x−x′)

|x−x′|3
dΩ′, (48)

where~J(x′) is a known volume current density at the source pointx′, and~H(x) is the desired magnetic field at the observation
pointx. A related equation for the magnetic vector potential~A is given by

~A(x) =
µ
4π

Z

Ω′

~J(x′)
|x−x′|

dΩ′. (49)

Equation (49) is the fundamental solution to the equation∇×µ−1∇×~A = ~J in an infinite homogeneous medium. Technically,
equation (49) is the fundamental solution to∇2~A = −µ~J, but since each individual conducting region is homogeneous, our gauge
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condition∇ ·σ~A = σ∇ ·~A = 0 and the standard vector identity∇2~A = ∇
(

∇ ·~A
)

−∇×∇×~A results in equation (49). Equation

(48) follows directly from~H = µ−1∇×~A. Note that if the problem of interest consisted of two dissimilar conductors touching each
other, the current density~J would be continuous but theA-field would posses a jump discontinuity due to our choice of gauge, and
∇ ·~A 6= 0 so (49) cannot be used. For these problems equation (48) is the more appropriate boundary condition. In our application
we need~H or ~A only on a surfaceΓ. Also note that we assume thatµ is a constant scalar over the entire problem, we restrict
ourselves to problems involving non-magnetic conducting materials. Inhomogeneous magnetic materials could be accounted for
by adding effective surface currents on material interfaces, but this is not considered here.

Employing basis function expansions for~J and~H, multiplying by 1-form test functionsW1(x) and integrating over the surface
gives

M sh = Zj , (50)

whereh andj are vectors of degrees-of-freedom, and the matrices are given by

Z i j =
Z

Γ

Z

Ω′

1
4π

~W2
i (x′)× (x−x′) · ~W1

j (x)

|x−x′|3
dΩ′dΓ (51)

M s
i j =

Z

Γ
~W1

i (x) · ~W1
j (x)dΓ. (52)

The matrixM s is a square “mass matrix” defined only over the surface, it is extremely sparse and well-conditioned and is not an
issue computationally. The matrixZ is a completely full rectangular matrix that maps volume currents to surface fields. A similar
equation for the~A-field field is given by

M sa = Yj , (53)

where

Y i j =
µ
4π

Z

Γ

Z

Ω′

~W2
i (x′) · ~W1

j (x)

|x−x′|
dΩ′dΓ (54)

The computation of the Biot-Savart matrices involves singular and near singular integrals. The surface integration isperformed
using standard Gaussian quadrature points for each surfaceelement. The volume integration uses an adaptive integration rule,
which varies the order of the Gaussian quadrature based on the distance between the source pointx′ and the observation pointx.
When the surface element containingx is a face of the volume element containingx′, a highly accurate height-based singularity
cancellation quadrature rule is used [31].

Here we consider the coupling of the finite element equations(35)-(39) with the~A-field Biot-Savart equation (54). An implicit
backward-difference method is used for to update the degrees-of-freedoma andj simultaneously,

(

M1 (σ)+∆tS1(µ−1))an+1 = M1 (σ)an−∆tD01(σ)v+∆t j s (55)

Y12jn+1−M1an+1 = 0 (56)

∆tM2jn+1 +H12(σ)an+1 = H12(σ)an−∆tH12K01v+∆t j s (57)

In the above equation the voltage and the independent current source are analytical functions evaluated at timen+1/2. Note that
the third equation follows from the definition of total electric current density

~J = σ

(

−
∂~A
∂t

−∇φ

)

+ ~Js. (58)

It is instructive to express the update equation in matrix form. The result is





(

M1 (σ)+∆tS1
(

µ−1
)) (

M1 (σ)+∆tS1
(

µ−1
))

0
0 M s −Y

H12(σ) H12(σ) ∆tM2 (1)









av
n+1

as
n+1

jn+1



 =





M1 (σ) M1 (σ) 0
0 0 0

H12(σ) H12(σ) 0









av
n

as
n

jn



+





−∆tD01(σ)v+∆t j s

0
−∆tH12(1)K01v+∆t j s



 (59)

The volume~A-field and the surface~A-field degrees-of-freedom have been separated for clarity.This system of equations can be
solved using an iterative method such as GMRES. But as written this linear system is poorly conditioned. First, note thata andj
have different units, they differ by a factor∆t/σ. Therefore every column of the matrix that multipliesj should be scaled byσ/∆t.
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Second, note that some of the matrix entries entries involveM1 (σ) while others involveM1 (1). This can be fixed by scaling both
sides of the Biot-Savart law byσ. This scaling can be written in standard preconditioner form as





I 0 0
0 σ 0
0 0 I









(

M1 (σ)+∆tS1
(

µ−1
)) (

M1 (σ)+∆tS1
(

µ−1
))

0
0 M s −Y

H12(σ) H12(σ) ∆tM2 (1)









I 0 0
0 I 0
0 0 σ/∆t



 . (60)

For this method to be stable we must examine the eigenvalues of the amplification matrix. We do not present an analytical proof
of stability, but we have numerically computed the completeset of eigenvalues of the amplification matrix for several problems,
and with different values of∆t, and in each case the eigenvalues are within or on the unit circle, hence the method is stable. The
eigenvectors corresponding to eigenvalues on the unit circle correspond to steady-state solutions of the diffusion equations. It
should be noted that we investigated lagging the Biot-Savart law in time, i.e. replacingjn+1 with jn in (56). This has the advantage
of moving the Biot-Savart matrixY from the left hand side to the right hand side. Unfortunatelythis method was unstablefor
small time steps. This method may be applicable if the goal is to quickly reachsome steady state solution, but it is not applicable
if the goal of the simulation is to resolve the diffusion dynamics.

There is an issue with the independent current source~Js. We allow for this source because it is convenient for many problems.
However this source cannot be arbitrary, it is a requirementthat this current source be in the range of the∇×µ−1∇× operator.

For example, if the user specifies some current~Js = ∇×µ−1∇×~F +δ, where~F is arbitrary andδ ∈
(

range
(

∇×µ−1∇×
))⊥

, the
numerical solution will exhibit unbounded linear growth. This linear growth term~Aunboundedis a solution of∂~A/∂t = δ, and is not
an artifact of the proposed finite element method, it is a valid mathematical solution of the model equations. To eliminate this,
care must be taken to ensure the independent current source us divergence free.

V. L OW-RANK QR ACCELERATION

In this section we develop the hierarchical low-rank QR approximation of dense matrices representing the Biot-Savart law,
the same algorithm is applicable to either (48) or (49). The algorithm has been implemented and tested on a parallel computer
consisting ofK identical processors, e.g. a cluster of PC’s. For uniprocessor computations the parameterK can be considered an
arbitrary partitioning of the problem, e.g. the number of computational threads.

We assume that the volumeΩ has been partitioned intoK partitions, with each partition having an equal number of volume
elements. The volume elements are distributed via the partitioning. The surfaceΓ is also partitioned intoK equally sized surface
partitions. Note however that the surface elements are not distributed via the surface partitions, each processor can access the entire
surface mesh. The Biot-Savart matrix is then decomposed into aK×K block matrix, with every blockZpq, p∈ {1 :K},q∈ {1 :K}
representing the interaction of surface partitionΓp with volumeΩq. Theqth processor computes blocksZpq, p = 1 : K, i.e. a
column of blocks. Note that the matrix is decomposed via a partitioning of elements, hence the matricesZpq are overlapping
in DOF space. For the highest-level partitioning of the elements we employ a graph-based algorithm [32]. This may not be
optimal for compression of the Biot-Savart matrix, but it isoptimal for the FEM part of the problem. Regardless of the particular
partitioning algorithm, the key point is that if the partitionsΓp andΩq are well-separated then the sub-matrixZpq will have a
low-rank QR decomposition. The procedure for computing thelow-rank QR decomposition is described in Section V-A below.
We define “well-separated” as follows: the bounding spheresfor the element partitionsΓp andΩq are computed, if the bounding
spheres do not intersect then the partitions are consideredwell-separated and a low-rank QR representation ofZpq is computed. We
employ a recursive procedure for computingZpq when partitionsΓp andΩq are not well-separated. This results in a hierarchical
representation forZ. If Γp andΩq are not well separated,Ωq is divided into eight equally sized sub-partitions,Γp is divided into
four equally sized sub-partitions, and the “well-separated test” is applied to the sub-partitionsΓpi andΩq j, i = 1 : 4, j = 1 : 8.
A space-filling curve algorithm is used for creating the sub-partitions. The process is applied recursively, with a low-rank QR
representation computed for well-separated sub-partitions. The recursion is halted when a volume sub-partition contains fewer
than some number of elements, for example 64 elements. If at the lowest level of recursion the interaction is not well separated,
it is simply represented by a dense matrix. This is illustrated in Figure 1.

No parallel communication is required in the construction of the hierarchical Biot-Savart matrix, each processor has the ele-
ments that it needs to perform the integrals. Each processorhas the same amount of work, hence the computation of the integrals
is load balanced. Note, however, that in the low-rank QR approximation the rankk is computed dynamically, and the rankk
depends upon the geometry. Hence the application of the hierarchical Biot-Savart matrix, i.e. the matrix-vector multiplication
β̄ = Zξ̄, may not be perfectly load balanced. Also note that the application of the hierarchical Biot-Savart matrix does require
parallel communication. This communication is as follows:(1) each processorq does a gather operation to get the values ofξ̄ that
it needs, (2) each processorq loops over the sub-matricesZpq, p= 1 : K and computes̄βq = Zpqξ̄q, (3) each processor participates
in a global reduction on̄βq.

A. Low-Rank QR Decomposition

Every matrixZ has a QR decomposition,Z = QR, whereQ is a unitary matrix (orthonormal columns), and the matrixR is an
upper triangular matrix. These QR decompositions are standard in computational linear algebra as they are key steps in solving
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Fig. 1. Hierarchical partitioning of the Biot-Savart matrix. The highest level of partitioning is based on the number of processors. Some of the the interactions
at anyLevel lwill be full rank (black boxes), and these interactions are sub-partitioned by decomposing the corresponding sub-volumeand sub-surface to create
Level l+1.

least-squares problems and eigenvalue problems. Given a matrix Z, there are well known algorithms such as Householder, fast
Givens, and modified Gram-Schmidt for computing the QR decomposition [33]. For our application, whenΓp andΩq are well
separated the matrixZpq will have a low-rank decomposition

Zpq
m×n ≈ Qm×k×Rk×n, (61)

wherek is the rank. Clearly, ifmandn are large andk is small, the QR decomposition represents a significant compression of the
matrix. We do not want to form the entireZpq and then compress it, rather we sample the matrix by pickings rows and columns
of Zpq, wheres is some predetermined number based on an estimate of the rank. Several algorithms have been proposed for
picking the sampled rows and columns. The procedure for picking the sampled rows and columns is ad hoc, the procedure thatwe
employ is described in Section V-B below, and is similar to analgorithm that has been successfully applied to electrostatic [21]
and frequency-domain [22] boundary integral equations. The sampling procedure is solely linear algebra, the implementation is
independent of the particular Green’s function, finite element basis functions, etc. and hence can be used for either (50) or (54).
Note that while theimplementationof the low-rank QR algorithm is independent of the particular Green’s function and finite
element basis functions, theperformanceof the algorithm does indeed upon these particulars. For low-rank QR algorithm to be
robust we must haves greater than the expected rank, i.e. we over-sample the Biot-Savart matrix. The algorithm for computing
Qm×k andRk×n is as follows:

1: Form the sampled column matrixSc
m×s and the sampled row matrixSr

s×n.
2: Compute the rank-revealing QR decompositionQ̃m×sR̃s×s = Sc

m×s using LAPACK routines DGEQPF and DORGQR.
The LAPACK subroutine library is public domain and is described in [34]. The rankk is determined by the criteria
R̃kk < thresh·R̃11 wherethreshis a threshold value. Keep onlyk columns ofQ̃, denote this asQm×k, and discard̃R.

3: Form a new matrixQ̂s×k by takings rows ofQm×k, the exact same rows as used to constructSr .
4: Compute the least-squares solution toQ̂s×kRk×n = Sr

s×n using LAPACK routine DGELSS.
At this point we have the desired matricesQm×k andRk×n which approximateZpq

m×n. To perform a matrix-vector multiplication
with the compressed matrix it is necessary to include the permutations due to the column and row sampling,Zpq

m×n ≈ Pc×Qm×k×
Rk×n×Pr , wherePr andPc are permutation matrices. The quality of the approximation, and the amount of compression (the rank
k), are determined by the value ofthreshused in Step 2 above. Our approach, being based on highly tuned LAPACK routines, is
efficient both in terms of FLOPS and memory usage. The complexity of a single QR decomposition isO(m·s)+O(s·n), using a
fixed value ofs yields a linear complexity inm andn. In our particular implementation the cost of computing thesampled rows
and columns dominates over the cost of the LAPACK routines. This obviously depends upon the accuracy of the quadratures
employed and on the data structures used to access the elements, and hence may not be true in all implementations.

The two key parameters in the QR decomposition are the threshold used to determine the rankk in Step 2, and the number of
sampled rows and columnss in step 1. In practice we have found 0.01< thresh< 0.001 to yield acceptable results, meaning the
the error in the QR compression is less than the intrinsic error of the finite element computation. Of course this is application
dependent. For the parameters we use a table look-up, where the argument is the normalized distance between the volume and
surface regions. This normalized distance is defined as the distance between the centroids of the two bounding spheres divided by
the sum of the radii of the spheres, a value ofd = 1 means that the two bounding spheres are just touching. A table of computed
ranks vs. distance, generated by running a dozen different problems, is shown in Figure 2.

B. Row and Column Sampling

The procedure for computing the sample row matrixSr
s×n and column matrixSc

m×s is important, the goal is to pick the most
independent rows and columns. An ad hoc procedure that workswell is described here. The process is initiated by simply
computing the first, middle, and last row ofZpq

m×n, and the first, middle, and last column. These will be independent based on the
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Fig. 2. Rank vs distance. The Black curve is the maximum rank, which is used to determines. The Gray curve is the minimum rank. This data is for athreshof
0.001.

fact that the volume and surface elements are sorted via a space-filling curve. The general step for computing a new row, givens
previously computed rows and columns, is as follows:

1: Define the matrixTs×s as the intersection ofSr
s×n andSc

m×s.
2: Define the vectorXi as theith row ofSc

m×s.
3: Define the vectorVj as thejth row ofTs×s.
4: Define the angleθi j as the angle between vectorsXi andVj .
5: The next row to compute is given the integeri defined bymaxi=1:n (minj=1:sθi j ), i.e. find the vectorXi that is “most

different” from all vectorsVj .
This procedure scans the existing sampled data and determines a good candidate for the next row to compute. The same

procedure is used for determining what column to compute next. We do not claim that the procedure is optimal, in fact the reason
for requiring oversampling, i.e.s> k, is that the sampling procedure is imperfect. If we employeds= k, wherek was the actual
rank, the low-rank QR approximation would likely not satisfy the required error tolerancethresh.

VI. COMPUTATIONAL RESULTS

A. Spherical Shell of Current

In this section Equation (59) is solved for an eddy current problem with an exact analytical solution to verify the validity of
the approach. For this verification experiment we constructthe exact solution to the problem of a spherical shell of current.
There exists a well-known exact analytical solution to the problem of computing the magnetic field~B due to a sphere of uniform
magnetization~M, i.e. a spherical magnet [35]. The~A-field due to a given magnetization~M is given by

~A(x) =
Z

V

~∇′× ~M(x′)
|x−x′|

dx′ +
I

S

~M(x′)×~n′

|x−x′|
da′ (62)

Note that in the first term~∇′ × ~M(x′) is an effective volume current density, and in the second term ~M(x′)×~n′ is an effective
surface current density. Therefore the problem of a sphere of uniform ~M is equivalent to the problem of an infinitely thin spherical
shell of current. We begin with this solution, and we integrate with respect tor to obtain the solution to a finite thickness spherical
shell of uniform current density. In spherical coordinates{r,θ,φ} the current source is given by

Jr = 0

Jθ =







r < a 0
a≤ r ≤ b Msin(φ)
r > b 0

Jφ = 0

and the steady-state~A-field is given by

Ar = 0

Aθ =















r < a M µ sin(φ) r(b−a)
3

a≤ r ≤ b M µ sin(φ) r3(4b−3r)−a4

12r2

r > b M µ sin(φ)b4−a4

12r2

Aφ = 0
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wherea andb denote the inner and outer radii of the spherical shell, respectively. A time-dependent solution can be created by
constructing a current source that smoothly ramps up to the steady-state value. In this verification simulation we use the ramp
function

R(t) =
1
2

(

Er f

[

η
(

2t
τ
−1

)]

+1

)

(63)

whereEr f denotes the Error Function. If we letJθ andAθ denote the steady-state solution, then the full time-dependent solution
is given by

Aθ(t) = AθR(t) (64)

Jθ(t) = JθR(r)+σAθ
dR(t)

dt
(65)

We useµ = 4π10−7 andσ = 107 in the spherical shell. We chooseη = 4.0 andτ = 1.0s for the ramp function. The initial
condition is~A= 0, this is acceptable since the exact~A-field is essentially zero due to our choice of ramp function parameters. The
spherical shell hasa= 0.8mandb= 1.0m. The computational mesh had a total of 6000 elements, this isfor the metal region only,
as the fields in the air are accounted for by the Biot-Savart law. We used∆t = 10−1 for 100 time steps. The GMRES algorithm
was used to solve the linear system at each time step, and approximately 330 iterations were required for a tolerance of 10−8.

Figure 3 shows the geometry and the computational mesh, witha section removed so that the interior can be seen. Figures 4
and 5 show a slice of the steady-state~A-field and~B-field, respectively. Figures 6 and 7 show a slice of the the steady-state~B-field
vectors and~B-field L2 error, respectively. The peak relative error (error energyper element divided by energy per element) was
0.001, and the total relative error (total error energy divided by total energy) was 10−6, which is excellent. Figure 8 shows the
source current, the eddy current, and the total current versus time for a particular mesh element. The chosen time step∆t = 10−1

was significantly less than the diffusion timeµσL2 ≈ 3.0s. This was not required for stability, as the method is unconditionally
stable, rather this was required in order for the computed eddy currents to be time-accurate. Finally, Figure 9 shows thetime
history of the computed~A-field versus the exact~A-field for a selected mesh element, note that the agreement isexcellent.

Fig. 3. The computational mesh of the spherical shell, with a portion removed for clarity.

B. Coaxial Rings

This computational experiment is of a set of three coaxial metal rings, this experiment verifies the performance of the pro-
posed algorithm for multiple conductors. The middle ring isdriven with a prescribed electric current density, which generates a
magnetic field, which in turn induces eddy currents in the other conductors. This problem does not possess an exact analytical
solution, instead we compare the Biot-Savart approach to a pure finite element approach that employs meshing a large region of
air surrounding the conductors. The air region extends out adistance of 4 radii. The air region is large enough so that we can
assumen×~A = 0 on the outer boundary. The computational mesh is shown in Figure 10. We usedµ = 4π10−7 andσ = 107 for
the metal rings. For the FEM with Air approach we solved (35) using a value ofσ = 1.0 in the air.
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Fig. 4. Slice showing the steady-state~A-field magnitude. Fig. 5. Slice showing the steady-state~B-field magnitude.

For each case all the fields were initialized to zero. The problem was driven by a constant current density in the middle ring of

Jr = 0

Jθ = 1.0

Jz = 0

that was turned on att = 0. For each case a time step of∆t = 0.1 was used for 300 steps.
The steady stateA-field andB-field are shown for the FEM with Air model in Figure 11 and Figure 12. These results are

compared to the steady-state results for the Biot-Savart approach. Examining the numerical value of the fields in the metal for the
two cases, the worst case difference between the two cases was 1.6% which is very good. It is quite possible that the FEM with
Biot-Savart law is the more accurate result, as this model does not force the fields go to zero after a distance of 4 radii.

At early times there are large eddy currents in the rings, at later times the eddy currents decay to zero, leaving no current in the
top and bottom ring and constant current in the middle ring. The computed currents are shown in Figure 13, with excellent agree-
ment between the FEM with Air approach and the Biot-Savart approach. The~B-field increases with the expected(1−exp(−αt))
rise time as shown in Figure 14, again with excellent agreement between the two methods.

The FEM With Air mesh consisted of 2064384 elements, and the problem was solved using 64 parallel processors. For the
FEM With Air approach there were over 7 million degrees-of-freedom, diagonally scaled Conjugate Gradient was used to solve
the linear system with on average 650 iterations per time step. The Biot-Savart approach required meshing only the metalrings
using 20736 elements. There were fewer than 70000 degrees-of-freedom, GMRES was used to solve the linear system with on
average 390 iterations per time step. The Biot-Savart matrix was a dense 27648 x 69120 matrix that was compressed by a factor
of 52x using the hierarchical low-rank QR compression of Section??. A threshold of 1.0e-3 was used for the QR compression.
It is interesting to note that the hierarchical QR decomposition resulted in 832 dense matrices (near interactions) and3842 QR
matrices (far interactions), these with an average rank of 15. The memory usage was balanced at approximately 30MWords
for both the dense and the QR matrices. This indicates that increasing the QR threshold, while compressing the QR matrices
further, would not have a significant impact on the overall compression. It is difficult to directly compare the CPU times for the
two different methods, since the FEM With Air problem was runon 64 processors while the Biot-Savart approach was run on
12 processors. Defining the total time as (wall clock time)×(number of processors) the Biot-Savart approach was betterthan 4×
faster. If we were to employ the Biot-Savart approach without the heirarchical low-rank QR compression, it would be significanlty
more expensive then the FEM With Air approach due to the dense27648 x 69120 matrix. Examining the computational cost of
computing the heirarchical low-rank QR decomposition in more detail, we note that the cost of the LAPACK subroutines (Steps
2,3, and 4 in Section V-A) represented only 3% of the CPU time,the bulk of the CPU time is spent in computing the sampled
row and column matrices (Step 1 in Section V-A). Sampling theBiot-Savart matrix is expensive to compute partly due to thehigh
accuracy quadrature rules we employ, and partly due to intrinsic inefficiencies of the C++ Standard Template Libary routines that
are employed to provide mappings between degrees-of-freedom and elements.
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Fig. 6. Slice showing the steady-state~B vectors. Fig. 7. Slice showing the steady-stateL2 error per element in the~B-field.
The error is largest where the field varies most rapidly, as expected. The
peak error was on the order of 10−3.
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Fig. 8. A time-history plot of theθ-components of the currents for a
selected mesh element in the middle of the shell. As the independent cur-
rent source ramps up, so does the induced eddy current but in the opposite
direction.
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Fig. 9. A time-history plot of the computed~A-field and the exact~A-field
for a selected mesh element in the middle of the shell, showing excellent
agreement and verifying the validity of the approach.

C. Additional QR Results

The results in Section VI-A and Section VI-B demonstrate that the implicit hybrid finite element Biot-Savart algorithm is an
accurate method for solving transient eddy current problems. In this section we summarize additional results on the performance
of the hierarchical low-rank QR compression of the Biot-Savart matrix. In [20] [21] [23] it is argued that a single-levelQR approx-
imation isO(N1.5) and a multilevel QR is asymptoticallyO(Nlog(N)). While we use a slightly different partitioning algorithm
due to our desire for a simple parallelization, we should expect comparable performance. We ran 16 different simulations, ranging
from 3000 to 450000 volume unknowns. These simulations consisted of four problems (spherical shell, coaxial rings, flatsheet
metal, generic railgun) at four mesh resolutions each. As each problem was refined the number of processors was increasedto
yield a fixed number of mesh elements per processor. The performance of the hierarchical QR algorithm for these problems is
shown in Figure 15 and Figure 16. In Figure 15 and Figure 16 theQR compressed results are the actual measured memory usage
and CPU time, respectively, whereas the uncompressed results are theoretical since the memory usage for the larger problems
without QR compression was prohibitive. There is variationin the results due to differences in geometry and the number of
parallel processors, but the overall conclusion is our algorithm is competitive with otherO(Nlog(N)) algorithms.
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Fig. 10. The computational mesh of the coaxial rings problem. Note that only the metal is shown, for the FEM with Air model the computational mesh was
extended out to a distance of 4 ring radii.

VII. C ONCLUSIONS

A novel numerical method for the multiply connected transient eddy current problem has been derived, implemented, and
verified. The algorithm consists of the H(Curl)-conformingfinite element discretization of the~A−φ eddy current PDE, combined
with a Biot-Savart law to specify the global boundary conditions on the conductors. The discrete Biot-Savart law is represented
by a dense matrix that maps volume current to surface fields. This dense matrix is compressed using a hierarchical low-rank QR
compression. The coupled system of equations is solved implicitly using the iterative GMRES method, and a scaling is proposed
that significantly improves the conditioning of the system of equations. The numerical method was verified by comparing to
an exact analytical solution for a simple spherical problem, and by comparing to a traditional finite element method for amore
complex problem. The method is very accurate and reasonablyefficient. In our present implementation there is no motion,
and hence the cost of computing the low-rank QR approximation of the Biot-Savart law is amortized over many time steps. For
applications involving moving conductors, further optimization would be required, in particular the cost of computing the sampled
rows and columns of the Biot-Savart matrix.
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Fig. 11. A-field contour for the FEM with Air model. The plot is a slice
through the middle of the geometry, only the right-half of the problem is
shown.

Fig. 12. B-field contour for the FEM with Air model. The plot is a slice
through the middle of the geometry, only the right-half of the problem is
shown.
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Fig. 13. A time-history plot of the currents for the coaxial ring problem.
The solid line denotes the computed solution using the FEM With Air,
the glyphs denote the computed solution using the Biot-Savart law. The
top curves are for the total current at a point in the middle conductor, the
bottom curves are for the total current at a point in the top conductor.
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Fig. 14. A time-history plot of the~B-field for the coaxial ring problem.
The solid line denotes the computed solution using the FEM With Air, the
glyphs denote the computed solution using the Biot-Savart law. The top
curves are for the~B-field at a point in the middle conductor, the bottom
curves are for the~B-field at a point in the top conductor.
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Fig. 15. Compression of the hierarchical low-rank QR algorithm. The y-
axis is words, the x-axis is number of volume mesh elements. The axes are
on a log scale. The solid line is is a plot of 50·Nlog2(N) for comparison.
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