2,944 research outputs found

    Pressure effects in PrT2B2C (T = Co, Ni, Pt): Applied and chemical pressure

    Full text link
    High-pressure electrical resistivity, r(T), measurements on intermetallic Pr(Co, Ni, Pt)2B2C compounds were performed down to 2K. At room pressure the r(T) in a-b direction curves for the non superconducting Pr(Co, Ni)2B2C compounds exhibit magnetic correlations at about 10 and 4 K, respectively. At low temperatures, PrCo2B2C shows a large spin-dependent electron scattering in comparison to PrNi2B2C. Under applied pressure the magnetic scattering tends to be suppressed more effectively in PrCo2B2C than in PrNi2 B2C. The low temperature behavior of r(T,P) for PrNi2B2C and PrCo2B2C suggests a spin fluctuations mechanism. In the other hand PrPt2B2C compound shows superconductivity at about 6 K and under pressure its superconducting transition temperature tends to be degraded at a rate dTc/dP = -0.34 K/GPa, as expected in compounds with transition metals. The experimental results in Co, Ni and Pt based compounds are analyzed from the point of view of the external and chemical internal pressure effects

    Direct observation of the influence of the As-Fe-As angle on the Tc of superconducting SmFeAsO1x_{1-x}Fx_{x}

    Get PDF
    The electrical resistivity, crystalline structure and electronic properties calculated from the experimentally measured atomic positions of the compound SmFeAsO0.81_{0.81}F0.19_{0.19} have been studied up to pressures ~20GPa. The correlation between the pressure dependence of the superconducting transition temperature (Tc) and crystallographic parameters on the same sample shows clearly that a regular FeAs4_{4} tetrahedron maximizes Tc, through optimization of carrier transfer to the FeAs planes as indicated by the evolution of the electronic band structures.Comment: 15pages, 4 figure

    High pressure effects in fluorinated HgBa2Ca2Cu3O(8+d)

    Get PDF
    We have measured the pressure sensitivity of Tc in fluorinated HgBa2Ca2Cu3O(8+d) (Hg-1223) ceramic samples with different F contents, applying pressures up to 30 GPa. We obtained that Tc increases with increasing pressure, reaching different maximum values, depending on the F doping level, and decreases for a further increase of pressure. A new high Tc record (166 K +/- 1 K) was achieved by applying pressure (23 GPa) in a fluorinated Hg-1223 sample near the optimum doping level. Our results show that all our samples are at the optimal doping, and that fluorine incorporation decreases the crystallographic aa-parameter concomitantly increasing the maximum attainable Tc. This effect reveals that the compression of the aa axes is one of the keys that controls the Tc of high temperature superconductors.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Absence of a structural transition up to 40 Gpa in MgB2 and the relevance of magnesium non-stoichiometry

    Full text link
    We report measurements on MgB2 up to ~40GPa. Increasing pressure yields a monotonous decrease of the lattice parameters and of the c/a ratio, but no structural transition down to parameters smaller than those of AlB2. The transition superconducting temperature also decreases with temperature in a sample dependent way. The results are explained by an increase of the filling of the 2D pxy bands with pressure, the Mg stoichiometry determining the starting position of the Fermi level. Our measurements indicate that these hole bands are the relevant ones for superconductivity.Comment: submitted March 9th 2001, PRB accepte

    Pressure effects in the triangular layered cobaltites NaxCoO2

    Full text link
    We have measured transport properties as a function of temperature and pressure up to 30GPa in the NaxCoO2 system. For the x=0.5 sample the transition temperature at 53K increases with pressure, while paradoxically the sample passes from an insulating to a metallic ground state. A similar transition is observed in the x=0.31 sample under pressure. Compression on the x=0.75 sample transforms the sample from a metallic to an insulating state. We discuss our results in terms of interactions between band structure effects and Na+ order.Comment: 18 pages, 5 figure

    Kondo Screening and Magnetic Ordering in Frustrated UNi4B

    Full text link
    UNi4B exhibits unusual properties and, in particular, a unique antiferromagnetic arrangement involving only 2/3 of the U sites. Based on the low temperature behavior of this compound, we propose that the remaining 1/3 U sites are nonmagnetic due to the Kondo effect. We derive a model in which the coexistence of magnetic and nonmagnetic U sites is the consequence of the competition between frustration of the crystallographic structure and instability of the 5f moments.Comment: 4 pages, 2 figure

    Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS 2 and 2H-TaSe 2

    Get PDF
    We present measurements of the superconducting and charge density wave critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2H-TaSe2 and 2H-TaS2. Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2H-TaS2 and 8.2 K at 23 GPa in 2H-TaSe2. We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases coexisting with superconductivity within our full pressure range.Comment: Published in Phys. Rev B 93, 184512 (2016

    Novel Phases of Planar Fermionic Systems

    Full text link
    We discuss a {\em family} of planar (two-dimensional) systems with the following phase strucure: a Fermi liquid, which goes by a second order transition (with non classical exponent even in mean-field) to an intermediate, inhomogeneous state (with nonstandard ordering momentum) , which in turn goes by a first order transition to a state with canonical order parameter. We analyze two examples: (i) a superconductor in a parallel magnetic field (which was discussed independently by Bulaevskii)for which the inhomogeneous state is obtained for 1.86Tc<B<1.862Tc1.86 T_c \stackrel{\sim}{<} B \stackrel{\sim}{<} 1.86 \sqrt{2} T_c where TcT_c is the critical temperature (in Kelvin) of the superconductor without a field and BB is measured in Tesla, and (ii) spinless (or, as is explained, spin polarized) fermions near half-filling where a similar, sizeable window (which grows in size with anisotropy) exists for the intermediate CDW phase at an ordering momentum different from (π,π)(\pi , \pi ). We discuss the experimental conditions for realizing and observing these phases and the Renormalization Group approach to the transitions.Comment: ([email protected],[email protected]) 29 p Latex 4 figs uuencoded separatel

    New Superhard Phases for 3D C60-based Fullerites

    Full text link
    We have explored new possible phases of 3D C60-based fullerites using semiempirical potentials and ab-initio density functional methods. We have found three closely related structures - two body centered orthorhombic and one body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule. These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and shear moduli around 240 GPa, which make them good candidates for new low density superhard materials.Comment: To be published in Physical Review Letter
    corecore