77 research outputs found

    Bestimmung des Aktivierungsvolumens einfacher molekularer Umlagerungen mit hochauflösender ÂčH-NMR-Spektroskopie bei hohen DrĂŒcken

    Get PDF
    Der Einfluß des Drucks auf molekulare Umlagerungen lĂ€ĂŸt sich NMR-spektroskopisch untersuchen. Das Aktivierungsvolumen fĂŒr die Rotation in (1) betrĂ€gt 10.3±1.0 cm3/mol, fĂŒr die Ringinversion in (2) −1.9±0.5 cm3/mol

    Competition between phonon superconductivity and Kondo screening in mixed valence and heavy fermion compounds

    Full text link
    We consider competition of Kondo effect and s-wave superconductivity in heavy fermion and mixed valence superconductors, using the phenomenological approach for the periodic Anderson model. Similar to the well known results for single-impurity Kondo effect in superconductors, we have found principal possibility of a re-entrant regime of the superconducting transition temperature, TcT_c, in heavy fermion superconductors in a narrow range of model parameters and concentration of f-electrons. Suppression of TcT_c in mixed valence superconductors is much weaker. Our theory has most validity in the low-temperature Fermi liquid regime, without re-entrant behavior of TcT_c. To check its applicability, we performed the fit for the xx-dependence of TcT_c in Ce1−x_{1-x}Lax_xRu3_3Si2_2 and obtained an excellent agreement with the experimental data, although no re-entrance was found in this case. Other experimental data are discussed in the light of our theoretical analysis. In particular, we compare temperatures of the superconducting transition for some known homologs, i.e., the analog periodic lattice compounds with and without f-elements. For a few pairs of homologs superconductivity exists only in the heavy fermion materials, thus confirming uniqueness of superconductivity mechanisms for the latter. We suggest that for some other compounds the value of TcT_c may remain of the same order in the two homologs, if superconductivity originates mainly on some light Fermi surface, but induces sizable superconducting gap on another Fermi surface,for which hybridization or other heavy fermion effects are more significant.Comment: 11 pages, 4 figures, pd

    Superconductivity on the threshold of magnetism in CePd2Si2 and CeIn3

    Full text link
    The magnetic ordering temperature of some rare earth based heavy fermion compounds is strongly pressure-dependent and can be completely suppressed at a critical pressure, pc_c, making way for novel correlated electron states close to this quantum critical point. We have studied the clean heavy fermion antiferromagnets CePd2_2Si2_2 and CeIn3_3 in a series of resistivity measurements at high pressures up to 3.2 GPa and down to temperatures in the mK region. In both materials, superconductivity appears in a small window of a few tenths of a GPa on either side of pc_c. We present detailed measurements of the superconducting and magnetic temperature-pressure phase diagram, which indicate that superconductivity in these materials is enhanced, rather than suppressed, by the closeness to magnetic order.Comment: 11 pages, including 9 figure

    Influence of a magnetic field on the antiferromagnetic order in UPt_3

    Full text link
    A neutron diffraction experiment was performed to investigate the effect of a magnetic field on the antiferromagnetic order in the heavy fermion superconductor UPt_3. Our results show that a field in the basal plane of up to 3.2 Tesla, higher than H_c2(0), has no effect: it can neither select a domain nor rotate the moment. This has a direct impact on current theories for the superconducting phase diagram based on a coupling to the magnetic order.Comment: 7 pages, RevTeX, 3 postscript figures, submitted to Phys. Rev.

    Upper critical magnetic fields of pure and thoriated U Be

    Get PDF
    We present measurements of the upper critical magnetic field Hc2(T) determined from the dc magnetization of polycrystalline samples of U(1-x)ThxBe13 with x=0 and x=0.0331 and a single crystal of pure UBe13. We find changes in slope in the Hc2 vs T phase diagrams of both polycrystalline samples which suggests entrance into a second superconducting phase at about Tc2. A degradation of the superconducting critical field is observed in the single crystal which may be related to the absence of second-phase behavior in this sample. Our results are discussed in light of recent experimental and theoretical treatments of second-phase behavior in heavy-fermion superconductors. © 1988 The American Physical Society

    Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi2_2Al20_{20}

    Full text link
    The cubic compound PrTi2_2Al20_{20} is a quadrupolar Kondo lattice system that exhibits quadrupolar ordering due to the non-Kramers Γ3\Gamma_3 ground doublet and has strong hybridization between 4f4f and conduction electrons. Our study using high-purity single crystal reveals that PrTi2_2Al20_{20} exhibits type-II superconductivity at Tc=200T_{\rm c} = 200 mK in the nonmagnetic ferroquadrupolar state. The superconducting critical temperature and field phase diagram suggests moderately enhanced effective mass of m∗/m0∌16m^*/m_0 \sim 16

    Superconductivity in the SU(N) Anderson Lattice at U=\infty

    Full text link
    We present a mean-field study of superconductivity in a generalized N-channel cubic Anderson lattice at U=\infty taking into account the effect of a nearest-neighbor attraction J. The condition U=\infty is implemented within the slave-boson formalism considering the slave bosons to be condensed. We consider the ff-level occupancy ranging from the mixed valence regime to the Kondo limit and study the dependence of the critical temperature on the various model parameters for each of three possible Cooper pairing symmetries (extended s, d-wave and p-wave pairing) and find interesting crossovers. It is found that the d- and p- wave order parameters have, in general, very similar critical temperatures. The extended s-wave pairing seems to be relatively more stable for electronic densities per channel close to one and for large values of the superconducting interaction J.Comment: Seven Figures; one appendix. Accepted for publication in Phys. Rev.

    Effects of La substitution on superconducting state of CeCoIn5

    Full text link
    We report effects of La substitution on superconducting state of heavy fermion superconductor CeCoIn5, as seen in transport and magnetization measurements. As opposed to the case of conventional superconductors, pair breaking by nonmagnetic La results in depression of Tc and indicates strong gap anisotropy. Upper critical field Hc2 values decrease with increased La concentration, but the critical field anisotropy, gamma=Hc2(a)/Hc2(c), does not change in the Ce_{1-x}La_xCoIn5 (x=0-0.15). The electronic system is in the clean limit for all values of x.Comment: Submitted to Phys. Rev.

    Coexistence of antiferromagnetism and superconductivity in the Anderson lattice

    Full text link
    We study the interplay between antiferromagnetism and superconductivity in a generalized infinite-UU Anderson lattice, where both superconductivity and antiferromagnetic order are introduced phenomenologically in mean field theory. In a certain regime, a quantum phase transition is found which is characterized by an abrupt expulsion of magnetic order by d-wave superconductivity, as externally applied pressure increases. This transition takes place when the d-wave superconducting critical temperature, TcT_c, intercepts the magnetic critical temperature, TmT_m, under increasing pressure. Calculations of the quasiparticle bands and density of states in the ordered phases are presented. We calculate the optical conductivity σ(ω)\sigma(\omega) in the clean limit. It is shown that when the temperature drops below TmT_m a double peak structure develops in σ(ω)\sigma(\omega).Comment: 18 pages, 13 figure

    Scaling of the magnetoresistance of UBe 1

    Get PDF
    We report magnetoresistance measurements of the heavy electron compound UBe13 above the superconducting transition temperature Tc and below 4 K for pressures P up to 19 kbar and for magnetic fields H up to 9 T. We observe strong negative magnetoresistance at all pressures and temperatures. The resistivity ρ is quadratic in temperature T from Tc up to a maximum temperature of 1 K at 1 bar increasing to 2 K at 19 kbar. The slope of the T2 term decreases with both H and with P. We find that ÎŽ(H)≡-[ρ(H)-ρ(0)]/ρ(0) for a given pressure scales as a function of H/T and exhibits power-law behavior over one decade with an exponent of 1.7. In addition, ÎŽ(H) at high pressure shows this same power law over a more limited H/T range
    • 

    corecore