502 research outputs found

    Genomic Organization, Splice Variants and Expression of CGMl, a CD66-related Member of the Carcinoembryonic Antigen Gene Family

    Get PDF
    The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunogiobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol moiety or a transmembrane domain, have been shown to convey cell adhesion in vitro. Here we describe two splice variants of CGMI. a transmembrane member of the CEA family without immunoglobulin constant.like domains. CGM1a and CGM1c contain cytopiasmic domains of 71 and 31 amino acids, respectively, The cytoplasmic region of CGM1a is encoded by four exons (Cyt1-Cyt4). Differential splicing of the Cyt1 exon (53 bp)..

    Peripheral sympathectomy and adrenal medullectomy do not alter cerebrospinal fluid norepinephrine

    Full text link
    Despite a blood-brain barrier for norepinephrine, the concentration of norepinephrine in plasma and cerebrospinal fluid has been observed to be similar. This relationship between plasma and cerebrospinal fluid norepinephrine levels suggests that peripheral sympathetic neurons innervating blood vessels to brain and spinal cord may contribute significantly to cerebrospinal fluid norepinephrine levels, and questions the validity of cerebrospinal fluid norepinephrine as an index of central nervous system noradrenergic activity. We demonstrate that extensive destruction of the peripheral sympathetic nervous system and the adrenal medulla has no effect on rat cerebrospinal fluid norepinephrine. It is therefore unlikely that peripheral sources of norepinephrine contribute significantly to cerebrospinal fluid norepinephrine levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26232/1/0000312.pd

    The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43

    Get PDF
    Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP

    Rivastigmine: an open-label, observational study of safety and effectiveness in treating patients with Alzheimer's disease for up to 5 years

    Get PDF
    BACKGROUND: Rivastigmine, a butyl- and acetylcholinesterase inhibitor, is approved for symptomatic treatment of Alzheimer's disease (AD). Data supporting the safety and efficacy of second-generation cholinesterase inhibitors, such as rivastigmine, are available for treatment up to 1 year, with limited data up to 2 1/2 years. The purpose of this report is to present safety and effectiveness data for rivastigmine therapy in patients with mild to moderately severe AD receiving treatment for up to 5 years. METHODS: An observational approach was used to study 37 patients with originally mild to moderate AD receiving rivastigmine as a therapy for AD in an open-label extension (ENA713, B352 Study Group, 1998). RESULTS: The initial trial demonstrated rivastigmine was well-tolerated and effective in terms of cognition, global functioning and activities of daily living. In this open label extension, high-dose rivastigmine therapy was safe and well tolerated over a 5-year period. Two thirds of the participants still enrolled at week 234 were in the original high-dose rivastigmine group during the double-blind phase, suggesting that early therapy may confer some benefit in delaying long-term progression of symptoms. CONCLUSIONS: Long-term cholinesterase inhibition therapy with rivastigmine was well tolerated, with no dropouts due to adverse effects past the initial titration period. Early initiation of treatment, with titration to high-dose therapy, may have an advantage in delaying progression of the illness

    Cognitive impairment and World Trade Centre-related exposures

    Get PDF
    On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story ‘Twin Towers’. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these ‘WTC-affected’ individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals

    Integrative analysis of RUNX1 downstream pathways and target genes

    Get PDF
    Background: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBF[Beta], and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBF[Beta]. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications

    Mutations in the TSGA14 gene in families with autism spectrum disorders

    Get PDF
    Linkage to 7q has been the most robust genetic finding in familial autism. A previous scan of multiplex families with autism spectrum disorders found a linkage signal of genome-wide significance at D7S530 on 7q32. We searched a candidate imprinted region at this location for genetic variants in families with positive linkage scores. Using exon resequencing, we identified three rare potentially pathogenic variants in the TSGA14 gene, which encodes a centrosomal protein. Two variants were missense mutations (c.664C>G; p.P206A and c.766T>G; p.C240G) that changed conserved residues in the same protein domain; the third variant (c.192+5G>A) altered splicing, which resulted in a protein with an internal deletion of 16 residues and a G33D substitution. These rare TSGA14 variants are enriched in the affected subjects (6/348 patients versus 2/670 controls, Fisher's exact two tailed p= 0.022). This is the first report of a possible link of a gene with a centrosomal function with familial autism

    Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample

    Get PDF
    Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders

    To what degree does cognitive impairment in Alzheimer's disease predict dependence of patients on caregivers?

    Get PDF
    BACKGROUND: Patients with Alzheimer's disease experience a progressive loss of cognitive function, and the ability to independently perform activities of daily life. Sometimes a dependent stage is reached quite early in the disease, when caregivers decide that the patients can no longer be left alone safely. This is an important aspect of Alzheimer's for patients, their families, and also health care providers. Understanding the relationship between a patient's current cognitive status and their need for care may assist clinicians when recommending an appropriate management plan. In this study, we investigated the relationship of cognitive function to dependence on caregivers before the patients reach a severe stage of the disease. METHODS: Data were obtained on 1,289 patients with mild-to-moderate Alzheimer's disease studied in two randomised clinical trials of galantamine (Reminyl(®)). Cognition was assessed using the cognitive part of the Alzheimer's Disease Assessment Scale (ADAS-cog) and Mini-Mental State Examination (MMSE). Patients were considered dependent if they required >12 hours of supervision each day or had high care needs. The Disability Assessment for Dementia (DAD) scale was also used as a measure of dependence. Disability was predicted directly using MMSE and ADAS-cog and compared to predictions from converted scores. RESULTS: The odds ratio of dependence was significantly higher amongst the patients with worse cognitive impairment, adjusting for age, gender and antipsychotic medication use. For example, a 4-point difference in ADAS-cog score was associated with an increase of 17% (95% CI 11–23) in the adjusted odds for >12 hours of supervision, and of 35% (95% CI 28–43) for dependence. Disability predicted directly using actual ADAS-cog and scores converted from MMSE values had close agreement using the models developed. CONCLUSION: In patients with mild-to-moderate Alzheimer's disease, even relatively small degrees of poorer cognitive function increased the risk of losing the ability to live independently

    Cerebrospinal Fluid Concentration of Brain-Derived Neurotrophic Factor and Cognitive Function in Non-Demented Subjects

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is an activity-dependent secreted protein that is critical to organization of neuronal networks and synaptic plasticity, especially in the hippocampus. We tested hypothesis that reduced CSF BDNF is associated with age-related cognitive decline.CSF concentration of BDNF, Abeta(42) and total tau were measured in 128 cognitively normal adults (Normals), 21 patients with Alzheimer's disease (AD), and nine patients with Mild Cognitive Impairment. Apolipoprotein E and BDNF SNP rs6265 genotype were determined. Neuropsychological tests were performed at baseline for all subjects and at follow-up visits in 50 Normals. CSF BDNF level was lower in AD patients compared to age-matched Normals (p = 0.02). CSF BDNF concentration decreased with age among Normals and was higher in women than men (both p<0.001). After adjusting for age, gender, education, CSF Abeta(42) and total tau, and APOE and BDNF genotypes, lower CSF BDNF concentration was associated poorer immediate and delayed recall at baseline (both p<0.05) and in follow up of approximately 3 years duration (both p<0.01).Reduced CSF BDNF was associated with age-related cognitive decline, suggesting a potential mechanism that may contribute in part to cognitive decline in older individuals
    corecore