202 research outputs found

    Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics

    Get PDF
    Capillary electrophoresis-mass spectrometry has shown considerable potential for profiling polar ionogenic compounds in metabolomics. Hyphenation of capillary electrophoresis to mass spectrometry is generally performed via a sheath-liquid interface. However, the electrophoretic effluent is significantly diluted in this configuration thereby limiting the utility of this method for highly sensitive metabolomics studies. Moreover, in this set-up the intrinsically low-flow property of capillary electrophoresis is not effectively utilized in combination with electrospray ionization. Here, advancements that significantly improved the performance of capillary electrophoresis-mass spectrometry are considered, with a special emphasis on the sheathless porous tip interface. Attention is also devoted to various technical aspects that still need to be addressed to make capillary electrophoresis-mass spectrometry a robust approach for probing the polar metabolome.Analytical BioScience

    Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling

    Get PDF
    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity.Analytical BioScience

    Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques.

    Get PDF
    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.Analytical BioScience

    Lab-on-a-Chip hyphenation with mass spectrometry: strategies for bioanalytical applications

    Get PDF
    The Lab-on-a-Chip concept aims at miniaturizing laboratory processes to enable automation and/or parallelization via microfluidic chips that are capable of handling minute sample volumes. Mass spectrometry is nowadays the detection method of choice, because of its selectivity, sensitivity and wide application range. We review the most interesting examples over the last two-and-a-half years where the two techniques were used for bioanalytical applications. Furthermore, we discuss the merits and limitations of such hyphenated systems. We inventorize the reported applications and approaches. We see an ongoing trend towards chip-based liquid chromatography-mass spectrometry usage and small volume analysis applications, particularly in the field of proteomics where bottom-up approaches profit from chip-based technologies and hyphenation with complex cell cultures.Seventh Framework Programme (FP7)Analytical BioScience

    Data-Driven Analysis of EEG Reveals Concomitant Superficial Sleep During Deep Sleep in Insomnia Disorder

    Get PDF
    Study Objectives: The subjective suffering of people with Insomnia Disorder (ID) is insufficiently accounted for by traditional sleep classification, which presumes a strict sequential occurrence of global brain states. Recent studies challenged this presumption by showing concurrent sleep- and wake-type neuronal activity. We hypothesized enhanced co-occurrence of diverging EEG vigilance signatures during sleep in ID. Methods: Electroencephalography (EEG) in 55 cases with ID and 64 controls without sleep complaints was subjected to a Latent Dirichlet Allocation topic model describing each 30 s epoch as a mixture of six vigilance states called Topics (T), ranked from N3-related T1 and T2 to wakefulness-related T6. For each stable epoch we determined topic dominance (the probability of the most likely topic), topic co-occurrence (the probability of the remaining topics), and epoch-to-epoch transition probabilities. Results: In stable epochs where the N1-related T4 was dominant, T4 was more dominant in ID than in controls, and patients showed an almost doubled co-occurrence of T4 during epochs where the N3-related T1 was dominant. Furthermore, patients had a higher probability of switching from T1- to T4-dominated epochs, at the cost of switching to N3-related T2-dominated epochs, and a higher probability of switching from N2-related T3- to wakefulness-related T6-dominated epochs. Conclusion: Even during their deepest sleep, the EEG of people with ID express more N1-related vigilance signatures than good sleepers do. People with ID are moreover more likely to switch from deep to light sleep and from N2 sleep to wakefulness. The findings suggest that hyperarousal never rests in ID

    Analytical techniques for biomass-restricted metabolomics: an overview of the state-of-the-art

    Get PDF
    Biomedical and clinical questions increasingly deal with biomass-restricted samples. To address these questions with a metabolomics approach, the development of new microscale analytical techniques and workflows is needed. Over the past few years, significant efforts have been made to improve the overall sensitivity of MSbased metabolomics workflows to enable the analysis of biological samples that are low in metabolite concentration or biomass. In this paper, factors that are crucial for the performance of biomass-restricted metabolomics studies are discussed, including sampling and sample preparation methods, separation techniques and ionization sources. Overviews of MS-based miniaturized metabolomics studies reported over the past five years are given in tables, with information provided on sample type, sample preparation volume, injection volume, separation techniques and MS analyzers. Finally, some general conclusions and perspectives are given.Analytical BioScience

    Profiling of polar ionogenic metabolites in Polish wines by capillary electrophoresis-mass spectrometry

    Get PDF
    The composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage). Metabolomics using NMR spectroscopy, GC-MS, and/or LC-MS has shown to be a useful approach for assessing the origin, authenticity, and quality of various wines. Nonetheless, the use of additional analytical techniques with complementary separation mechanisms may aid in the deeper understanding of wine's metabolic processes. In this study, we demonstrate that CE-MS is a very suitable approach for the efficient profiling of polar ionogenic metabolites in wines. Without using any sample preparation or derivatization, wine was analyzed using a 10-min CE-MS workflow with interday RSD values for 31 polar and charged metabolites below 3.8% and 23% for migration times and peak areas, respectively. The utility of this workflow for the global profiling of polar ionogenic metabolites in wine was evaluated by analyzing different cool-climate Polish wine samples.Analytical BioScience
    corecore