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Study Objectives: The subjective suffering of people with Insomnia Disorder (ID)
is insufficiently accounted for by traditional sleep classification, which presumes a
strict sequential occurrence of global brain states. Recent studies challenged this
presumption by showing concurrent sleep- and wake-type neuronal activity. We
hypothesized enhanced co-occurrence of diverging EEG vigilance signatures during
sleep in ID.

Methods: Electroencephalography (EEG) in 55 cases with ID and 64 controls without
sleep complaints was subjected to a Latent Dirichlet Allocation topic model describing
each 30 s epoch as a mixture of six vigilance states called Topics (T), ranked from N3-
related T1 and T2 to wakefulness-related T6. For each stable epoch we determined
topic dominance (the probability of the most likely topic), topic co-occurrence (the
probability of the remaining topics), and epoch-to-epoch transition probabilities.

Results: In stable epochs where the N1-related T4 was dominant, T4 was more
dominant in ID than in controls, and patients showed an almost doubled co-occurrence
of T4 during epochs where the N3-related T1 was dominant. Furthermore, patients
had a higher probability of switching from T1- to T4-dominated epochs, at the cost
of switching to N3-related T2-dominated epochs, and a higher probability of switching
from N2-related T3- to wakefulness-related T6-dominated epochs.

Conclusion: Even during their deepest sleep, the EEG of people with ID express more
N1-related vigilance signatures than good sleepers do. People with ID are moreover
more likely to switch from deep to light sleep and from N2 sleep to wakefulness. The
findings suggest that hyperarousal never rests in ID.

Keywords: insomnia, indiscrete labeling of sleep, vigilance states, topic modeling, data-driven analysis,
polysomnography, latent Dirichlet allocation

Abbreviations: AASM, American Academy of Sleep Medicine; CAP, cyclic alternating pattern; EEG,
electroencephalography; EOG, electrooculography; ERP, event-related potential; ID, insomnia disorder; ISI, insomnia
severity index; LDA, latent Dirichlet allocation; NREM, non-rapid eye movement; PSG, polysomnography; REM, rapid eye
movement; TST, total sleep time.
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STATEMENT OF SIGNIFICANCE

Insomnia Disorder (ID) is the most prevalent sleep disorder.
It is poorly understood why people with ID experience part
of their sleep as being awake. Quantitative EEG analyses may
aid to solve the impasse. We used symbolic representations of
spectral changes within 3 s windows to describe standard 30 s
sleep epochs as a mixture of states. The method revealed that,
as compared to controls, people with ID experience twice as
much concurrent light sleep during the deepest sleep, suggesting
that hyperarousal continues during deep sleep. Future studies
could address the value of concurrent light sleep as a biomarker
to pursue brain mechanisms involved in ID and understand
treatment response variability.

INTRODUCTION

Insomnia disorder (ID) is characterized by persistent
difficulty initiating or maintaining sleep associated with
daytime dysfunction which cannot be attributed to insufficient
opportunity for sleep (American Academy of Sleep Medicine,
2014). More than 6% of the adult population in high-income
countries suffer from chronic insomnia, and this number
increases to almost 50% when including the acute form of
insomnia (Ohayon, 2002). Moreover, ID has been identified as
the second most common mental disorder in Europe (Wittchen
et al., 2011). Only recently, genome-wide association studies have
commenced to reveal biological pathways involved in insomnia
(Hammerschlag et al., 2017; Jansen et al., 2019). Phenotypically,
ID can be characterized as a persistent state of physiological and
psychological hyperarousal, resembling the state normally seen
only transiently during stress (Bonnet and Arand, 2010; Riemann
et al., 2010). Polysomnography (PSG) findings in subjects with
ID include reductions in sleep continuity and in the time spent in
slow-wave sleep and rapid-eye-movement (REM) sleep (Baglioni
et al., 2014). These reductions, however, hardly correlate with
the subjective severity of sleep complaints (Manconi et al.,
2010) in ID and typically underestimate it. The question may
be raised whether the common PSG variables capture the key
neurophysiological impairments in ID.

More recent methods go beyond the standard manual PSG
scoring and give a more detailed description of sleep in ID.
An important aim of these methods is to close the present
gap between the objectively recorded sleep and the subjective
experience of ID (Feige et al., 2013). A recent review revealed
promising use of auditory stimulation and event-related potential
(ERP) recordings for understanding the mismatch between
subjective and objective sleep quality and quantity (Bastien
et al., 2014). This technique may not readily be available in
routine clinical PSG assessment. To quantify intrinsic rather than
responsive processes, most methods focus on the analysis of
ongoing sleep EEG. A first class of methods utilizes measures
of the spectral composition of the EEG signal. The most robust
finding may be that the EEG-spectrum of people with ID contains
more high frequency power during pre-sleep wakefulness
(Freedman, 1986; Colombo et al., 2016a), and during non-REM

(NREM) sleep (Israel et al., 2012; Spiegelhalder et al., 2012;
Maes et al., 2014), which may be involved in the degree of
perceiving sleep as wakefulness (Krystal et al., 2002). A second
class of methods focuses on characterization of transient event
occurrence. For example, the REM sleep instability model of ID
(Riemann et al., 2012) states that micro- and macro-arousals
occur more frequently during and around REM sleep; these
arousals have been proposed to be involved in more thought-
like cognitions (Wassing et al., 2016). Findings on spindles and
K-complexes are equivocal. Studies reported either a decreased
spindle density in ID (Besset et al., 1998) or no change (Bastien
et al., 2009a). K-complex density was reported to be increased
(Forget et al., 2011) or normal (Bastien et al., 2009b).

A third class of methods focusses on the temporal dynamics
in the EEG signal. Most analyses of the cyclic alternating pattern
(CAP) agree that people with ID express an increased CAP rate
(Terzano et al., 2003; Chouvarda et al., 2011, 2012), suggested
to indicate “destabilization” of sleep in people with ID (Parrino
et al., 2004), which may be improved by certain hypnotics
(Parrino et al., 2004, 2008; Ozone et al., 2008). One study further
concludes that there is a link between CAP phase A2 subtype and
sleep state misperception in ID (Parrino et al., 2009). In a recent
study, 30 s epochs of staged sleep were regarded as a Markov
chain dynamical process with individual-specific probabilities to
switch from one state to another (Wei et al., 2017). It was shown
that the probability of transitioning from N2 sleep to N1 sleep
or wakefulness is most consistently increased in ID. In another
approach, stronger long-range temporal correlations in EEG
power fluctuations during pre-sleep wakefulness were associated
with worse subjective sleep quality within ID and within normal
sleepers (Colombo et al., 2016b). In conclusion, it seems that
the association between the subjective complaints and objective
sleep parameters may be better revealed when the brain activity
assessed with EEG is considered as a complex dynamical process.

A consideration when searching for objective measures that
better capture subjective complaints is that traditional sleep
classifications all presume a strict sequential occurrence of global
brain states. Recent studies challenged this presumption by
showing evidence for concurrent sleep- and wake-type neuronal
activity (Nir et al., 2011; Vyazovskiy et al., 2011; Funk et al.,
2016). Thus, ideally, novel objective measures to pursue neural
correlates of subjective sleep complaints in insomnia should not
be limited to quantifying vigilance states sequentially, but also
quantify their concurrency.

Based on these considerations, we here analyzed the sleep
EEG of people with ID and controls without sleep complaints,
using a data-driven topic model previously developed and
validated in our lab (Koch et al., 2014; Christensen et al.,
2016). Originally, topic modeling is a probabilistic approach
used to reveal underlying themes or topics in text documents,
based on the presence and combination of words (Blei et al.,
2003). The same method has been employed to describe the
proportions of different underlying latent vigilance states that are
simultaneously present in each 30 s sleep epoch. Latent vigilance
states are determined in a data-driven way based on symbolically
represented patterns observed in the EEG power spectrum. Every
epoch can be described as a mixture of six topics T (T1-T6),
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each related but not equal to a classical sleep stage. The topics T
can be ranked from N3-related T1 and T2 to wakefulness-related
T6. The topic modeling approach for analyzing sleep EEG has
several advantages: (1) It includes high-dimensional information
that is lost with manual scoring, (2) it outputs a mixture of states
rather than a discrete scoring, and (3) epochs are not biased by
subjective interpretation or classification of neighboring epochs.
Lastly, although the symbolic representation is based on scaled
EEG and EOG spectral measures, this method goes beyond
standard spectral analysis methods and analysis of specific micro-
sleep phenomena. The method captures latent patterns in each
epoch and visualizes this into a graphical two-dimensional
representation. It captures latent patterns in each epoch that
indicate the sequential occurrence of different vigilance states,
but also captures latent patterns that are indicative of several
concomitant vigilance states. An important note here is that
EEG leads integrate neurophysiological activity across tens- to
hundreds of thousands of neurons. Therefore, the seemingly
temporal simultaneous vigilance states observed at the level of
the scalp, may well be due to spatial differences in vigilance
states of small groups of neurons. We use the term “concomitant”
to indicate both simultaneous and sequential occurrences of
different vigilance states.

By comparing the sleep EEG of people with ID and
controls in this data-driven way, we aimed to reveal group
differences that might not be detectable by current methods.
For instance, local wakefulness intrusions in sleep would
imply simultaneous wake- and sleep EEG signatures. We
therefore hypothesized a stronger dominance and co-occurrence
of wakefulness-related topics in people suffering from ID
than in controls without sleep complaints. We moreover
expected that the sleep EEG of people with ID would have
higher probability to transition from epochs dominated by
deeper sleep-related topics to epochs dominated by light sleep-
related topics.

MATERIALS AND METHODS

Participants
Participants were recruited through advertisement and the
Netherlands Sleep Registry website (NSR1) (Benjamins et al.,
2017). A total of 55 participants with ID (41 females,
47.8± 12.9 years) and 64 controls (42 females, 45.3± 14.6 years)
were included. The study was approved by the ethics committee
of the Amsterdam University Medical Center, Amsterdam,
Netherlands. All participants provided written informed consent.
Inclusion criteria for ID were in accordance with the Diagnostic
and Statistical Manual of Mental Disorders, fifth edition
(American Psychiatric Association, 2013). Exclusion criteria
for controls were any sleep difficulties. Exclusion criteria
for all participants were neurological, psychiatric, somatic
conditions, or other diagnosed sleep disorders including sleep
apnea, restless legs syndrome, narcolepsy, or circadian rhythm
disorder. In addition, no sleep medication in the previous

1https://www.sleepregistry.org

two months was allowed. Demographic and PSG variables are
summarized in Table 1.

Procedure and EEG Recording
Participants were instructed to maintain a regular sleep/wake
schedule during 1 week prior to laboratory assessment. On the
days of laboratory assessments, they were furthermore instructed
to refrain from alcohol and drugs and to limit their caffeinated
beverages to a maximum of two cups before 12:00 noon. EEG
was recorded for two consecutive nights between 11:00 PM
and 7:00 AM using a 256-electrode HydroCel net connected
to a Net Amps 300 amplifier (Electrical Geodesic Inc. (EGI),
Eugene, OR, United States; input impedance: 200 M�, A/D
converter: 24 bits). Electrode impedance was kept below 100 k�.
Signals were acquired with a sampling frequency of 1,000 Hz and
referenced to the Cz electrode. Sleep-stage scoring was performed
in accordance to the American Academy of Sleep Medicine
(AASM) standard (Iber et al., 2007). Data from the second night
of sleep were analyzed.

EEG Preprocessing
Pre-processing steps were performed using the MEEGPIPE
toolbox2 and EEGLAB (Delorme and Makeig, 2004) in Matlab
R2014a (The Mathworks Inc., Natick, MA, United States). First,
signals were downsampled to 250 Hz with an antialiasing low-
pass filter at 80 Hz. Because the original analysis procedure
(Koch et al., 2014) was developed and validated on the
derivations C3-A2, O1-A2, EOGL-A2, and EOGR-A1, we
analyzed the rereferenced signal between those electrode pairs.
Visual inspection of data quality employed “EEG viewer,” a
Matlab based software developed by Miki Nikolic at Danish
Center for Sleep Medicine at Rigshospitalet, Glostrup, Denmark
(DCSM). In case the signal was of poor quality, a neighboring
electrode was selected.

Signals were filtered forward and reverse in time using 4th
order Butterworth filters with cutoffs (−3 dB) at 0.3 and 35 Hz
for the EEG signals, and 0.3 and 10 Hz for the EOG signals.
All epochs between lights off and lights on were analyzed except
for epochs in the beginning or end of the night that were
visually clearly contaminated by artifacts. The signal quality
of each remaining epoch was evaluated using the standard
deviation and range of the signal, and the range of the first
derivative of the signal. An epoch was rejected in case the
epoch-wise mean of any of the three statistics surpasses four
median absolute derivations, as previously described in the
supplementary materials of Colombo et al. (2016a). Epochs with
artifacts were omitted from analysis.

Sleep Analysis Procedure
Artifact-free epochs were analyzed using a validated automated
topic modeling procedure (Koch et al., 2014). As described
above, based on the occurrence and combination of symbolic
representations of spectral patterns in the raw EEG data, the topic
model describes each epoch as a mixture of vigilance states rather
than as a single sleep stage. Latent Dirichlet Allocation (LDA)

2https://github.com/meegpipe/meegpipe
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TABLE 1 | Demographics and sleep characteristics (subjective, AASM-based, and LDA model-based) in ID and controls.

Controls ID P

Demographics

N 64 55 −

Age [years, µ ± σ] 45.3 ± 14.6 47.8 ± 12.9 0.41

Sex [male/female] 22/42 14/41 0.29

Subjective insomnia

ISI [µ ± σ] 3.8 ± 3.7 16.5 ± 4.3 <0.0001

AASM-based measures

TiB [min, µ ± σ] 483.3 ± 52.7 471.6 ± 44.5 0.10

TST [min, µ ± σ] 421.7 ± 60.7 400.6 ± 59.3 0.03

SE [%, µ ± σ] 87.3 ± 8.6 85.1 ± 10.7 0.32

Wake [%, µ ± σ] 11.7 ± 8.7 14.3 ± 10.9 0.23

REM [%, µ ± σ] 20.2 ± 6.7 19.4 ± 8.5 0.45

N1 [%, µ ± σ] 3.6 ± 2.4 5.0 ± 4.1 0.13

N2 [%, µ ± σ] 39.9 ± 9.4 37.8 ± 11.1 0.12

N3 [%, µ ± σ] 23.6 ± 9.0 22.9 ± 10.2 0.62

LDA model-based overall average topic probability

T1 [%, µ ± σ] 5.69 ± 1.67 5.23 ± 1.50 0.23

T2 [%, µ ± σ] 25.06 ± 2.64 24.86 ± 2.65 0.52

T3 [%, µ ± σ] 31.08 ± 3.14 31.70 ± 2.77 0.44

T4 [%, µ ± σ] 12.81 ± 1.43 13.08 ± 1.38 0.26

T5 [%, µ ± σ] 18.97 ± 2.88 18.76 ± 2.63 0.94

T6 [%, µ ± σ] 5.62 ± 1.66 5.59 ± 1.42 0.56

LDA model-based percentage of time of stable epochs for each stable epoch type and in total (for the subset of participants with a non-zero number of stable epochs)

Stable T1 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 1.51 ± 2.09 (NC = 30) 1.11 ± 1.24 (NID = 22) 0.57

Stable T2 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 19.98 ± 4.71 (NC = 64) 20.01 ± 4.51 (NID = 55) 0.94

Stable T3 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 24.33 ± 6.04 (NC = 64) 24.72 ± 5.38 (NID = 55) 0.98

Stable T4 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 2.73 ± 2.44 (NC = 62) 3.42 ± 2.83 (NID = 55) 0.24

Stable T5 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 7.33 ± 4.43 (NC = 64) 7.67 ± 4.54 (NID = 55) 0.46

Stable T6 epochs [%, µ ± σ] (number of subjects expressing non-zero values) 1.59 ± 1.94 (NC = 44) 1.06 ± 1.26 (NID = 37) 0.34

Stable epochs in total [%, µ ± σ] (number of subjects expressing non-zero values) 56.08 ± 5.42 (NC = 64) 57.29 ± 6.59 (NID = 55) 0.23

The P-value for the statistics on sex is obtained from a Chi-square test. All other P-values were obtained from Wilcoxon rank sum tests. Bold font-style indicates significant
group differences. ID, insomnia disorder; ISI, insomnia severity index; TiB, time in bed from lights out time to get up time; TST, total sleep time; SE, sleep efficiency; T1-T6,
topic 1 to 6; LDA, latent Dirichlet allocation.

topic modeling is a machine learning method, traditionally used
on text documents to reveal the topics based on the presence and
combination of words in the document (Blei et al., 2003). In a
similar way, we here used the LDA model procedure to reveal
underlying vigilance states (topics) based on the occurrence of
spectral patterns (words). Figure 1 illustrates the procedure of
symbolizing the raw EEG and building distributions of spectral
patterns denoted as “word” distributions. Figure 2 illustrates
how the LDA model used the “word” distribution within an
epoch to estimate the probabilities of latent vigilance states
(topics) for that epoch.

Symbolization of the Raw EEG
First, we performed fast-fourier spectral analysis on each 1 s
bin of the recording to obtain a participant-specific distribution
of spectral power within each classical frequency band. Five
equally sized categories were defined by the quintiles of these
distributions (Extreme, High, Median, Low, or Very low power;
Figures 1A–C). Secondly, each 1 s segment was categorized
according to these quintile cutoffs (Figure 1D), effectively

generating a long vector of letters (E, H, M, L, or V) for each of the
classical frequency bands. Then, for each frequency band, 28 3-
letter words were generated for each 30 s epoch by concatenating
the letters from moving 3 s windows with steps of 1 s. Each 3-
letter word descibes a specific pattern of change in spectral power
(e.g., HLM: high-low-median; Figure 1E). Lastly, we counted
how often each possible word occurred in the 30 s epoch, creating
a word distribution (Figure 1F). Note that for two EEG channels
(C3-A2 and O1-A2) the word distributions were created for each
classical frequency band (δ, θ, α, and β), and for each EOG
channel (EOGL-A2 and EOGR-A1) one word distribution was
created for the spectral power below 5 Hz, and one for the cross-
correlation values between the two EOG channels instead of
power (Koch et al., 2014).

LDA Probabilistic Topic Modeling
Figure 2 illustrates how the LDA model combines word
distributions across the EEG and EOG channels to estimate the
probabilty of occurence of six vigilance states (topics) within each
epoch. The LDA model has previously been trained and validated
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FIGURE 1 | Symbolization of raw EEG for the purpose of Latent Dirichlet Allocation (LDA) topic modeling. The raw data of two EEG signals of which one is depicted
in (A), were bandpass filtered into the classical frequency bands (δ, θ, α, and β). (B) One bandpass filtered signal is shown. (C) The power in each 1 s window was
calculated and summarized in a distribution across the entire recording. (D) According to quintiles of this distribution, the power in each 1 s window was categorized
as either “Very low,” “Low,” “Median,” “High,” or “Extreme,” effectively creating a vector of letters. (E) For each 3 s sliding window, three consecutive letters were
concatenated to create words indicating the spectral power-level development. (F) Finally, a word distribution was created for each 30 s epoch by counting how
often each of the possible words occurred (5 categories and 3 letters: 53 = 125 words per frequency-band per EEG channel). In addition to the EEG words, an
additional 192 words were created in a similar fashion [4 categories and 3 letters: 43 = 64 words per EOG signal (left and right) plus 64 words for the
cross-correlation between the EOG signals].

on an independent dataset (Koch et al., 2014). In short, we applied
a machine learning approach for non-linear classification of more
that two classes (multiclass support vector machine using a radial
basis-function kernel) to find that classification in six different
topics (rather than 3, 4, 5, or 7) resulted in the highest accuracy
for the LDA model output to replicate traditional PSG-scoring.
Then we trained the LDA model, where it iteratively learns (1)
which words occur together (word distribution patterns), and
(2) six distinct latent types of word distribution patterns called
topics. The trained model is subsequently validated against a
test dataset (Koch et al., 2014), and can thereafter be used on
other datasets. Put simply, the observed word distributions in an
epoch (Figures 2A,B, gray bars) are compared to each of the six
expected word distributions for each topic (Figure 2B; colored
bars) that were generated by the model. If the observed and
expected distribution compare well, the probability of that topic
is high, while if the distributions hardly overlap, the probability
of that topic is low. The probabilities are normalized to a sum
of 1 (Figure 2C). In this way, each 30 s epoch is represented as

a mixture of six topic probabilities. Repeating this for every 30 s
epoch in a recording results in a topic diagram (Figure 2D) where
each vertical bin is a mixture of six topics, and the height of each
stacked bar in that bin represents the probability of each topic.
The most likely topic in each bin can be related–but does not
equal–to one of the traditional sleep stages.

It should be noted that Figure 2 only shows the word
distributions of δ, θ, α, and β power in one EEG channel, to
promote clarity of the visualization. The actual LDA model uses
all word distributions, i.e., of δ, θ, α, and β power of two EEG
channels (C3-A2 and O1-A2); of the spectral power below 5 Hz
of two EOG channels (EOGL-A2 and EOGR-A1); and of the
cross-correlation values between the two EOG channels.

Characteristics of Topics
Figure 3 shows four examples of topic diagrams and
corresponding manually scored hypnograms. The topic diagram
shows the mixture of vigilance states for each epoch. To facilitate
understanding of the characteristics represented in each topic,
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FIGURE 2 | Estimation of concurrent vigilance states in each 30 s epoch. The combined word distributions for each 30 s epoch were inserted into a Latent Dirichlet
Allocation (LDA) model, which returns a mixture of topic probabilities for each epoch. The LDA topic model was previously trained to learn the particular distribution
of words for six topics (Koch et al., 2014). (A) The observed word distributions of one 30 s epoch is inserted into the LDA topic model. (B) The observed word
distributions of the 30 s epoch are depicted in transparent gray bars, and the expected word distributions for each topic in colored bars. (C) By comparing the
observed and expected word distributions, the LDA topic model returns the probability that the observed word distributions comes from the word distribution of
each topic. Each 30 s epoch is thereby represented as a mixture of six topics. (D) A topic diagram obtained by repeating this procedure for each 30 s epoch in the
recording. Each vertical bin in the topic diagram is a mixture of six colors, where the hight of each stacked color represents the probability of a topic. Colors codes
range from dark blue (T1) to red (T6). (E) For comparison, the manual scored hypnogram is presented below the topic-diagram.
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FIGURE 3 | Examples of topic diagrams. Topic diagrams of two normal sleepers (A,B) and two insomniac patients (C,D). Each 30 s sleep epoch is represented as a
multi-colored vertical bin where the heigth of each stacked color presents the probability that the topic is present. For comparison, the manual scored hypnograms
are presented below each diagram. Color codes range from dark blue (T1, mostly seen in deep N3 sleep) to red (T6, mostly seen in wakefulness). Orange (T5) is
mostly seen during REM sleep. Note, however, that there is no one-to-one matching of topics and conventional top-down defined qualitative sleep stages. Subtle
differences might be seen comparing the two controls (A,B) and two cases with insomnia (C,D): In the epochs dominated by the light sleep related topic (yellow),
the light sleep related topic is generally stronger (taller yellow bars) for the cases with insomnia as compared to controls.

we here describe the EEG signal in epochs with a particularly
high probability of one of the six topics:

1. An epoch with a high probability of Topic 1 (T1, dark
blue) has high and consistent delta and theta power. No
eye movements are present, but EEG delta activity will
be recorded from the EOGL-A2 and EOGR-A2 leads. An
epoch rich in T1 will likely be labeled as stage N3 in
conventional sleep scoring.

2. An epoch with a high probability of Topic 2 (T2, light
blue) has high and consistent delta and theta power,
intermediate alpha power and low beta power. No eye
movements are present, but some EEG delta activity can
be recorded from the EOGL-A2 and EOGR-A2 leads. An
epoch rich in T2 will most likely be labeled as stage N3 in
conventional sleep scoring.

3. An epoch with a high probability of Topic 3 (T3, turquoise)
has intermediate delta, sigma, alpha and beta power in
the EEG. No eye movements are present. An epoch
rich in T3 will most likely be labeled as stage N2 in
conventional sleep scoring.

4. An epoch with a high probability of Topic 4 (T4, yellow)
has low delta and theta power, intermediate alpha power
and intermediate to high beta power. Eye movements are
likely. An epoch rich in T4 will most likely be labeled as
stage N1 in conventional sleep scoring.

5. An epoch with a high probability of Topic 5 (T5, orange)
has low delta power and low to intermediate theta, alpha
and beta power. Eye movements are present. An epoch
rich in T5 will most likely be labeled as REM sleep in
conventional sleep scoring.

6. An epoch with a high probability of Topic 6 (T6, red)
has low delta power, intermediate theta power, and high
alpha and beta power. Eye movements are likely. An epoch
rich in T6 will most likely be labeled as wakefulness in
conventional sleep scoring.

Topic Presence, Dominance, and
Dynamics
For the topic diagram of each participant, we extracted
several derived measures including topic dominance, and co-
occurrence, as well as between-epoch transition probabilities
as a measure of vigilance dynamics. First, the topic with the
highest probability in an epoch was labeled as the dominant
topic. Using this dominance label, we defined epochs as
stable if they were part of at least three consecutive epochs
with the same dominant topic. These stable epochs were
selected to extract (1) the probabilities of the dominant topic
(dominance) and (2) the probabilities of co-occurence of the
remaining topics (normalized to 1 within each epoch). Finally,
we computed transition probability as the number of transitions
from a stable epoch dominated by one topic to an epoch
dominated by any other topic normalized to the total number of
possible transitions.

Case-control differences were evaluated for the following
outcome measures:

1. The overall average probability of each of the six topics
across the night.

2. The percentage of time spent in each of the six stable epoch
types across the night.
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3. The probability of the dominant topic in each of the six
stable epoch types (dominance).

4. The co-occurrance probabilities of each non-dominant
topic in each of the six stable epoch types (co-occurence).

5. The probabilities to transition from a stable epoch
dominated by one topic to an epoch dominated by each of
the other topics.

Spectral Analysis
In order to evaluate whether LDA modeling differs from
traditional spectral analysis, we performed a fast-fourier spectral
analysis of the same EEG channels that were used to
compute the word distribution. Absolute spectral power was
integrated across the standard clinical frequency bands for
each 30-s epoch and averaged within each of the manually
identified sleep stages.

Statistical Analyses
Wilcoxon rank-sum tests evaluated group-differences in age
and sleep characteristics including the total Insomnia Severity
Index (ISI) score, the PSG-based measures, the standard
spectral analysis measures, and three of the above LDA model-
based measures: the overall average probability of each topic,
the percentage of time spent in each of the stable epoch
types, and the probability to transition from a stable epoch
dominated by one topic to an epoch dominated by each of
the other topics.

Because the number of stable epochs for each topic is different
across participants, we did not calculate average values for the
measures of dominance and co-occurrence across the night, but
rather used mixed-effect general linear models to account for this
variability. Accordingly, we evaluated group differences in the
dominance and co-occurrence of each of the topics with group,
age, and sex as fixed-effect factors, and a random intercept for
each participant.

In addition to describing markers that distinguish ID patients
from controls, we evaluated whether the significant markers
were associated with the severity of insomnia complaints in
the ID group. We used mixed-effects linear models to evaluate
the association of the total score of the ISI as a measure of
subjective insomnia complaints with topic presence, dominance,
and co-occurrence. Age and sex were included in the models
as covariates. We calculated partial correlation coefficients
between the transition-probabilities and total score of the ISI,

controlling for age and sex. In case the effect of the total
ISI score was significant, we performed one additional mixed-
effects linear regression analysis to elucidate which insomnia
symptom could best explain the dependent variable by replacing
the total ISI sum score with seven regressors indicating each
individual ISI item.

The significance level was set to α = 0.05 in all cases.
All analyses were performed using MATLAB, R2014a, The
MathWorks, Inc., Natick, MA, United States.

RESULTS

Table 1 shows group averages and significance of differences
between ID and controls for demographic characteristics,
subjective insomnia severity, PSG measures, and LDA model-
based measures. Participants with ID subjectively experienced
significantly higher insomnia severity. PSG measures were
comparable, except for significantly shorter total sleep duration in
ID (controls: 421.7 ± 60.7 min, ID: 400.6 ± 59.3 min, Wilcoxon
W = 4249, z = 2.18, p = 0.03).

Overall Average Probability of Each of
the Six Topics Across the Night
Table 1 reports the overall average probability of each of the
six topics for controls and ID. The overall probabilities did not
significantly differ between ID and controls for any topic.

Percentage of Time Spent in Each of the
Six Stable Epoch Types
Table 1 reports the percentage of time spent in each of the
stable epoch types. No significant between-group differences were
observed. Furthermore, there was no significant difference in
the percentage of stable epochs irrespective of topic dominance
between controls [mean (SD) = 56.08% (5.42%)] and ID [57.29%
(6.59%); W = 3526, z = 1.20, p = 0.23].

Dominance
Table 2 reports the mean dominance of each stable epoch type
for controls and ID. In stable epochs where the N1-related T4
was dominant, T4 was more dominant in ID than in controls
(Figure 4A). The topic diagrams in Figures 2D, 3 shows T4 in
yellow. These findings indicate that stable epochs of light sleep in

TABLE 2 | Increased light sleep dominance in ID.

Topic control ID 1 P

T1[%] 52.40 (49.69–55.11) 51.43 (48.81–54.05) −1.28 (−5.28–2.72) 0.46

T2 [%] 67.81 (66.15–69.47) 67.46 (65.78–69.13) −0.35 (−2.72–2.01) 0.48

T3 [%] 57.36 (56.43–58.29) 57.71 (56.67–58.75) 0.35 (−1.04–1.74) 0.68

T4 [%] 52.59 (51.13–54.05) 55.28 (53.68–56.88) 2.74 (0.58–4.90) 0.03

T5 [%] 61.11 (59.62–62.60) 61.44 (59.80–63.07) 0.31 (−1.90–2.52) 0.63

T6 [%] 51.75 (48.93–54.58) 50.09 (47.74–52.43) −2.20 (−5.98–1.58) 0.33

Estimated mean topic dominances defined as the mean probability of each topic when that topic is stable and 95%-confidence intervals for controls and subjects with
Insomnia disorder (ID). Bold font-style indicates significant group differences.
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FIGURE 4 | Light sleep-related EEG signatures are more abundant during
light and deep sleep in ID than in controls. (A) Violin plots for each group
(horizontal axis) of the probability of light sleep-related topic T4 when this is
stable and dominant (vertical axis). (B) Normalized co-occurrence of topic T4
when deep sleep-related topic T1 is stable and dominant (vertical axis).

ID contain more light sleep characteristics than stable epochs of
light sleep in controls do.

Co-occurrence
Table 3 reports on the normalized co-occurrence of T2 to
T6 in stable epochs dominated by T1 (N3-related topic). As
T1 is related to (very) deep sleep, only 30/64 controls and
22/55 participants with ID expressed this stable epoch type (no
between group differences in proportion of expression; Chi-
square test, p = 0.45). For these stable epochs, we found a
significantly higher co-occurrence of the N1-related T4 in ID
(8.44%) as compared to controls [4.49%, t(551) = 2.32, p = 0.02;
Figure 4B]. The co-occurrences of other topics in stable epochs
dominated by T1 were not significantly different between ID
and controls. These findings indicate that deep sleep in ID
contains twice as much of the light sleep characteristics as
compared to controls.

Similar tables for the other stable epoch types (stable epochs
dominated by T2 to T6) are presented in Supplementary

Table S1. None of the co-occurrences reported in the
Supplementary Table S1 were found to differ between groups.

Probabilities to Transit From Stable
Epochs Dominated by One Topic to an
Epoch Dominated by Each of the Other
Topics
The probabilities to switch from stable epochs of one topic to
an epoch of any other topic are summarized in a Markovian
state diagram (Figure 5). The transition probability from
stable epochs dominated by the N3-related T1 to an epoch
dominated by the N1-related T4 was about 8 times higher
in participants with ID [p(T1→T4|ID) = 13.5%] compared to
controls [p(T1→T4|C) = 1.7%; Wilcoxon W = 579, z = 2.36,
p = 0.018]. In addition, the transition probability from the
same stable epochs dominated by the N3-related T1 to an
epoch dominated by another N3-related topic (T2) was about
6 times lower in participants with ID compared to controls
[p(T1→T2|ID) = 2.6% compared to p(T1→T2|C) = 15.4%;

FIGURE 5 | Increased probability for transitions from deep sleep to light sleep
in ID as compared to controls. Markovian state diagram for topic transitions.
The red arrow indicates a higher probability for participants with ID compared
to controls, whereas the blue arrow indicates a lower probability for
participants with ID compared to controls. The topics are indicated with colors
and arranged in a way so the vertical axis denotes deepness of sleep.

TABLE 3 | Increased N1 sleep-related EEG signatures during deep sleep related periods in ID.

Controls ID 1 P

Co-occurrence of T2 [%] 33.48 (23.47–43.50) 21.15 (11.80–30.50) −12.58 (−26.75–1.58) 0.10

Co-occurrence of T3 [%] 9.06 (5.60–12.52) 8.17 (5.62–10.72) −0.81 (−5.33–3.70) 0.71

Co-occurrence of T4 [%] 4.49 (2.70−6.29) 8.44 (5.43−11.46) 4.12 (0.79–7.44) 0.02

Co-occurrence of T5 [%] 7.83 (4.63–11.03) 8.13 (5.39–10.86) 0.56 (−3.84–4.95) 0.84

Co-occurrence of T6 [%] 45.08 (36.71–53.46) 53.59 (43.57–63.62) 8.69 (−4.32–21.70) 0.20

The normalized co-occurrence of topics T2-T6 in periods where the deep sleep-related topic T1 is dominant and stable. The values are reported as estimates, their 95th
confidence intervals, and P-values obtained from linear mixed effect models with group, age and sex as fixed-effect factors, and a random intercept for each subject.
Bold font-style indicates significant group differences.
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Wilcoxon W = 394.5, z =−2.22, p = 0.026]. Finally, the transition
probability from stable epochs dominated by the N2-related T3 to
an epoch dominated by the wakefulness-related T6 was increased
in participants with ID [p(T3→T6|ID) = 0.7%] compared to
controls [p(T3→T6|C) = 0.5%; Wilcoxon W = 3406.5, z = 1.97,
p = 0.048]. No other transitions were found to differ between
groups. These findings indicate that compared to ID, controls
have a higher tendency to switch from stable epochs dominated
by one deep sleep related topic to epochs dominated by another
deep sleep related topic, effectively remaining in deep sleep,
whereas participants with ID have a higher tendency to switch to
an epoch dominated by a light sleep related topic or from a stable
epoch dominated by a N2-related topic to wakefulness.

Spectral Analysis
We found that beta power in the occipital region during
N1 sleep was significantly increased in participants with ID
[mean(SD) = 93.3 µV (32.1 µV)] compared to controls [mean
(SD) = 91.9 µV (90.2 µV); W = 3340, z =−2.20, p = 0.03).

Associations With Subjective Severity of
Insomnia Symptoms in People With
Insomnia
Firstly, interindividual differences in the transition probabilities
“T1→T4,” “T1→T2,” and “T3→T6,” and beta power in the
occipital region during N1 sleep, were not significantly associated
with total ISI scores (0.37 ≤ p ≤ 0.88). Secondly, whereas
interindividual differences in total ISI scores could not explain T4
dominance (β [se] = −0.11 [0.17], t(1334) = −0.64, p = 0.52), we
found that greater T4 co-occurrence in stable epochs dominated
by T1 was significantly associated with higher total ISI scores (β
[se] = 1.13 [0.23], t(192) = 4.85, p = 2.5 × 10−6). The follow-up
analysis indicated that greater T4 co-occurrence in stable epochs
dominated by T1 was associated with more difficulties staying
asleep (β [se] = 4.17 [1.18], t(186) = 3.54, p = 5.0 × 10−4), with
more worries/distress about sleep problems (β [se] = 5.06 [1.82],
t(186) = 2.78, p = 0.006), and with less problems waking up too
early (β [se] = −1.98 [0.94], t(186) = −2.11, p = 0.04). The other
ISI items were not statistically significant (0.54 ≤ p ≤ 0.80).

DISCUSSION

We analyzed the sleep EEG of people with ID and controls with
an automatic sleep analysis procedure that expresses every 30-s
epoch as a mixture of vigilance states, here called topics, instead
of a single sleep stage. Compared to controls, participants with
ID had (1) a higher probability of a light sleep-related topic (T4)
in stable epochs where light sleep is dominant, (2) a higher co-
occurrence of the same light sleep related T4 in stable epochs
where a deep sleep related topic (T1) is dominant. Additionally,
(3) we found that people with ID had a higher probability
to transition from a stable T1-dominant epoch to an epoch
where a light sleep-related topic is dominant, while controls were
more likely to transition to an epoch where another deep sleep
related topic is dominant. Also, (4) we found that people with
ID had a higher probability to transition from stable epochs of
an N2-sleep related topic (T3) to an epoch dominated by the

wakefulness-related topic (T6) as compared to controls. Finally,
using a standard spectral analysis (5) we found that people with
ID show increased beta power in the occipital region during N1
sleep as compared to controls.

Our findings indicate that people with ID have more EEG
signatures typical of light sleep than controls do, both during
epochs where light sleep prevails and during epochs where
deep sleep prevails. Local sleep and wakefulness would imply
simultaneous wake- and sleep EEG signatures, which is what
these findings suggest. Together with our findings of increased
transitions from deep sleep to light sleep in ID, the present
study suggests that people with ID are hyperaroused even in
their deepest sleep. Another notable finding is the lack of major
differences in standard PSG measures, as a recent review has also
concluded (Feige et al., 2013). In a similar vein, we did not find
any group-differences in the average probability or time spent
in any of the stable epochs dominated by one topic. Only total
sleep time (TST) was statistically different. However, with a mere
20 min less TST in ID as compared to controls, this difference
cannot explain the severe subjective insomnia complaints. Our
novel approach detected that subtle markers of light sleep-
related EEG features during deep sleep were associated with the
severity of insomnia complaints. Greater co-occurence of light
sleep signatures during deep sleep in insomnia were associated
with more difficulties staying asleep, more worries/distress about
sleep problems, and with less problems waking up too early.
These findings indicate that although the differences in light
sleep signatures during deep sleep between insomnia patients and
controls are small, these subtle changes in sleep do correspond to
subjective insomnia complaints. Another important finding is the
opposite direction of associations with difficulties staying asleep
and waking up too early. The occurrence of light sleep during
deep sleep is positively associated with the subjective difficulty
staying asleep but negatively with the subjective problem of
waking up too early. The suggested differential association
appeared in post hoc analyses and therefore requires replication.

Although this study utilized the patterns of power-
spectral dynamics, our methodology goes beyond standard
spectral analysis methods and analysis of specific micro-sleep
phenomena. Our method is flexible and fully automated
and is applicable for scoring and analyzing PSG data of ID
patients. Nonetheless, our findings are in line with previous
research that identified increased beta-power during NREM
sleep in insomnia disorder (Freedman, 1986; Merica et al.,
1998). Furthermore, we have previously implicated (Wei et al.,
2017) an increased probability to transition from stage N2
to stage N1 or wakefulness in ID (based on manual scorings
following the AASM scoring criteria); similarly, here we found
increased transition probabilities from a N2-related T3 to a
wakefulness-related T6, and from a deep sleep-related T1 to a
light sleep-related T4 in ID.

A future aim could be to examine the temporal dynamics
of the topics across the night, as the topic probabilities clearly
show cyclic dynamics. Interestingly, for the REM-related topic
(T5) we visually observed low probabilities for T5 at the start
of the nights which increased with time. In the current study we
did not compute an objective measure capturing these temporal
dynamics because the current definition of sleep cycles depends
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on discrete classification of epochs. New measures of such
dynamics need careful examination and validation against this
golden standard.

Importance for the Field and Limitations
The automatic sleep analysis procedure used in the current study
has provided a more detailed representation of sleep as compared
to the AASM standard. Expressing sleep epochs as a mixture
of vigilance states allowed us to investigate sleep dynamics in a
more refined way, and we identified alterations in sleep patterns
of participants with ID that were otherwise not detectable by
manual scoring methods. A future aim could be to develop
a LDA model that utilizes all EEG leads from high-density
EEG recordings. Such a development would extend the spatial
dimension of the analysis. Another important consideration for
PSG research in general is that the current analysis procedure
is bounded by the 30 s epochs. For now, the LDA model is
trained to compute topic probabilities for fixed sleep epochs with
a constant length of 30 s. A future focus for automated sleep-
stage classification could be to both allow indiscrete labeling
(more stages at a time), and variable epoch lengths. It should,
however, be noted that by allowing data-driven methods to
define epoch boundaries and vigilance states, the method might
yield sleep stages that are not defined by the AASM today.
In addition, the time-scale at which the number of vigilance
states is defined is itself a factor that defines the number of
vigilance states that can be captured. Nonetheless, overcoming
these challenges will increase our conceptual understanding of
sleep, and allows for data-driven identification of sleep alterations
in health and disease.

A limitation of the present study is that we did not correct
for type-1 error-rate inflation. The significance of the results
would not have survived a false discovery rate correction. The
findings should be considered preliminary until replicated in an
independent sample.

The current study has produced important findings that can
benefit the understanding of the symptomology of ID in terms of
sleep characteristics. In ID, light sleep-related sleep EEG power
changes are more prominent not only in light sleep but also even
in their deepest sleep.
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