971 research outputs found
The Standing Wave Phenomenon in Radio Telescopes; Frequency Modulation of the WSRT Primary Beam
Inadequacies in the knowledge of the primary beam response of current
interferometric arrays often form a limitation to the image fidelity. We hope
to overcome these limitations by constructing a frequency-resolved,
full-polarization empirical model for the primary beam of the Westerbork
Synthesis Radio Telescope (WSRT). Holographic observations, sampling angular
scales between about 5 arcmin and 11 degrees, were obtained of a bright compact
source (3C147). These permitted measurement of voltage response patterns for
seven of the fourteen telescopes in the array and allowed calculation of the
mean cross-correlated power beam. Good sampling of the main-lobe, near-in, and
far-side-lobes out to a radius of more than 5 degrees was obtained. A robust
empirical beam model was detemined in all polarization products and at
frequencies between 1322 and 1457 MHz with 1 MHz resolution. Substantial
departures from axi-symmetry are apparent in the main-lobe as well as
systematic differences between the polarization properties. Surprisingly, many
beam properties are modulated at the 5 to 10% level with changing frequency.
These include: (1) the main beam area, (2) the side-lobe to main-lobe power
ratio, and (3) the effective telescope aperture. These semi-sinusoidsal
modulations have a basic period of about 17 MHz, consistent with the natural
'standing wave' period of a 8.75 m focal distance. The deduced frequency
modulations of the beam pattern were verified in an independent long duration
observation using compact continuum sources at very large off-axis distances.
Application of our frequency-resolved beam model should enable higher dynamic
range and improved image fidelity for interferometric observations in complex
fields. (abridged)Comment: 12 pages, 11 figures, Accepted for publication in A&A, figures
compressed to low resolution; high-resolution version available at:
http://www.astro.rug.nl/~popping/wsrtbeam.pd
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
We show that microwave spectroscopy of a dense Rydberg gas trapped on a
superconducting atom chip in the dipole blockade regime reveals directly the
dipole-dipole many-body interaction energy spectrum. We use this method to
investigate the expansion of the Rydberg cloud under the effect of repulsive
van der Waals forces and the breakdown of the frozen gas approximation. This
study opens a promising route for quantum simulation of many-body systems and
quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-
Single Atom and Two Atom Ramsey Interferometry with Quantized Fields
Implications of field quantization on Ramsey interferometry are discussed and
general conditions for the occurrence of interference are obtained.
Interferences do not occur if the fields in two Ramsey zones have precise
number of photons. However in this case we show how two atom (like two photon)
interferometry can be used to discern a variety of interference effects as the
two independent Ramsey zones get entangled by the passage of first atom.
Generation of various entangled states like |0,2>+|2,0> are discussed and in
far off resonance case generation of entangled state of two coherent states is
discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.
Realization of a superconducting atom chip
We have trapped rubidium atoms in the magnetic field produced by a
superconducting atom chip operated at liquid Helium temperatures. Up to
atoms are held in a Ioffe-Pritchard trap at a distance of 440
m from the chip surface, with a temperature of 40 K. The trap
lifetime reaches 115 s at low atomic densities. These results open the way to
the exploration of atom--surface interactions and coherent atomic transport in
a superconducting environment, whose properties are radically different from
normal metals at room temperature.Comment: Submitted to Phys. Rev. Let
Quantum Zeno dynamics of a field in a cavity
We analyze the quantum Zeno dynamics that takes place when a field stored in
a cavity undergoes frequent interactions with atoms. We show that repeated
measurements or unitary operations performed on the atoms probing the field
state confine the evolution to tailored subspaces of the total Hilbert space.
This confinement leads to non-trivial field evolutions and to the generation of
interesting non-classical states, including mesoscopic field state
superpositions. We elucidate the main features of the quantum Zeno mechanism in
the context of a state-of-the-art cavity quantum electrodynamics experiment. A
plethora of effects is investigated, from state manipulations by phase space
tweezers to nearly arbitrary state synthesis. We analyze in details the
practical implementation of this dynamics and assess its robustness by
numerical simulations including realistic experimental imperfections. We
comment on the various perspectives opened by this proposal
Modification of radiation pressure due to cooperative scattering of light
Cooperative spontaneous emission of a single photon from a cloud of N atoms
modifies substantially the radiation pressure exerted by a far-detuned laser
beam exciting the atoms. On one hand, the force induced by photon absorption
depends on the collective decay rate of the excited atomic state. On the other
hand, directional spontaneous emission counteracts the recoil induced by the
absorption. We derive an analytical expression for the radiation pressure in
steady-state. For a smooth extended atomic distribution we show that the
radiation pressure depends on the atom number via cooperative scattering and
that, for certain atom numbers, it can be suppressed or enhanced.Comment: 8 pages, 2 Figure
Proposal to produce long-lived mesoscopic superpositions through an atom-driven field interaction
We present a proposal for the production of longer-lived mesoscopic
superpositions which relies on two requirements: parametric amplification and
squeezed vacuum reservoir for cavity-field states. Our proposal involves the
interaction of a two-level atom with a cavity field which is simultaneously
subjected to amplification processes.Comment: 12 pages, title changed, text improved and refences adde
Distributed coherent manipulation of qutrits by virtual excitation processes
We propose a scheme for the deterministic coherent manipulation of two atomic
qutrits, trapped in separate cavities coupled through a short optical fibre or
optical resonator. We study such a system in the regime of dispersive
atom-field interactions, where the dynamics of atoms, cavities and fibre
operates through virtual population of both the atomic excited states and
photonic states in the cavities and fibre. We show that the resulting effective
dynamics allows for the creation of robust qutrit entanglement, and thoroughly
investigate the influence of imperfections and dissipation, due to atomic
spontaneous emission and photon leakage, on the entanglement of the two qutrits
state.Comment: 15 pages, 4 figure
A southern hemisphere survey of the 5780 and 6284 {\AA} diffuse interstellar bands: correlation with the extinction
We present a new database of 5780.5 and 6283.8 {\AA} DIB measurements and
also study their correlation with the reddening. The database is based on
high-resolution, high-quality spectra of early-type nearby stars located in the
southern hemisphere at an average distance of 300 pc. Equivalent widths of the
two DIBs were determined by means of a realistic continuum fitting and
synthetic atmospheric transmissions. For all stars that possess a precise
measurement of their color excess, we compare the DIBs and the extinction. We
find average linear relationships of the DIBS and the color excess that agree
well with those of a previous survey of northern hemisphere stars closer than
550 pc. This similarity shows that there is no significant spatial dependence
of the average relationship in the solar neighborhood within 600 pc. A
noticeably different result is our higher degree of correlation of the two DIBs
with the extinction. We demonstrate that it is simply due to the lower
temperature and intrinsic luminosity of our targets. Using cooler target stars
reduces the number of outliers, especially for nearby stars, confirming that
the radiation field of UV bright stars has a significant influence on the DIB
strength. We have used the cleanest data to compute updated DIB shapes.Comment: Astronomy & Astrophysics (in press
“Special needs” is an ineffective euphemism
Recension av: Erika Fatland, Änglastaden : berättelser från Beslan, Norstedt, 2012, ISBN 978-91-1-304378-
- …
