857 research outputs found

    The Standing Wave Phenomenon in Radio Telescopes; Frequency Modulation of the WSRT Primary Beam

    Get PDF
    Inadequacies in the knowledge of the primary beam response of current interferometric arrays often form a limitation to the image fidelity. We hope to overcome these limitations by constructing a frequency-resolved, full-polarization empirical model for the primary beam of the Westerbork Synthesis Radio Telescope (WSRT). Holographic observations, sampling angular scales between about 5 arcmin and 11 degrees, were obtained of a bright compact source (3C147). These permitted measurement of voltage response patterns for seven of the fourteen telescopes in the array and allowed calculation of the mean cross-correlated power beam. Good sampling of the main-lobe, near-in, and far-side-lobes out to a radius of more than 5 degrees was obtained. A robust empirical beam model was detemined in all polarization products and at frequencies between 1322 and 1457 MHz with 1 MHz resolution. Substantial departures from axi-symmetry are apparent in the main-lobe as well as systematic differences between the polarization properties. Surprisingly, many beam properties are modulated at the 5 to 10% level with changing frequency. These include: (1) the main beam area, (2) the side-lobe to main-lobe power ratio, and (3) the effective telescope aperture. These semi-sinusoidsal modulations have a basic period of about 17 MHz, consistent with the natural 'standing wave' period of a 8.75 m focal distance. The deduced frequency modulations of the beam pattern were verified in an independent long duration observation using compact continuum sources at very large off-axis distances. Application of our frequency-resolved beam model should enable higher dynamic range and improved image fidelity for interferometric observations in complex fields. (abridged)Comment: 12 pages, 11 figures, Accepted for publication in A&A, figures compressed to low resolution; high-resolution version available at: http://www.astro.rug.nl/~popping/wsrtbeam.pd

    Realization of a superconducting atom chip

    Full text link
    We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid Helium temperatures. Up to 8.2â‹…1058.2\cdot 10^5 atoms are held in a Ioffe-Pritchard trap at a distance of 440 ÎĽ\mum from the chip surface, with a temperature of 40 ÎĽ\muK. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom--surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.Comment: Submitted to Phys. Rev. Let

    Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    Full text link
    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-

    Characterization of Human Endogenous Retrovirus Type K Virus-like Particles Generated from Recombinant Baculoviruses

    Get PDF
    AbstractThe family of human endogenous retrovirus type K (HERV-K) comprises members with long open reading frames (ORF) for retroviral proteins. The existence of a biologically active provirus with replicative capacities has not yet been demonstrated. To confirm the assumption that HERV-K codes for the previously observed retrovirus-like particles (human teratocarcinoma-derived virus, HTDV) in human teratocarcinoma cells, we have constructed recombinant full-length HERV-K cDNA-based baculoviruses withgag, pro, pol,andenvORFs. Two viral constructs were used for infections of insect cells, one bearing 67 bp of the 5′ untranslated region upstream of the 5′ splice donor (SD) site and of the retroviral genes, the second omitting the SD sequence. For both recombinant viruses, indirect immunofluorescence and laser scan analyses revealed expression of HERV-K Gag protein. Electron microscopy studies demonstrated efficient production of virus-like particles (VLPs) at the cytoplasmic cell membranes. These VLPs are morphologically identical with the HTDV phenotype. In immunoelectron microscopy of ultrathin frozen sections, anti-HERV-K Gag antibodies specifically reacted with HERV-K VLPs. In Western blots, in addition to the 76-kDa precursor protein, the putative major core protein with an apparent molecular mass of 32 kDa exhibited predominant immunoreactivity with anti-Gag antiserum. In contrast, neither HERV-K Env nor cORF proteins could be detected due to inefficient mRNA splicing. Purified particles from insect cell culture supernatants tested in an ultrasensitive reverse transcriptase assay revealed weak polymerase activity. The data demonstrate that HERV-K codes for retroviral particles of the HTDV phenotype

    Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

    Get PDF
    Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ramsey zones get entangled by the passage of first atom. Generation of various entangled states like |0,2>+|2,0> are discussed and in far off resonance case generation of entangled state of two coherent states is discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.

    Universal Quantum Cloning in Cavity QED

    Get PDF
    We propose an implementation of an universal quantum cloning machine [UQCM, Hillery and Buzek, Phys. Rev. A {\bf 56}, 3446 (1997)] in a Cavity Quantum Electrodynamics (CQED) experiment. This UQCM acts on the electronic states of atoms that interact with the electromagnetic field of a high QQ cavity. We discuss here the specific case of the 1→21 \to 2 cloning process using either a one- or a two-cavity configuration

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    Quantum Zeno dynamics of a field in a cavity

    Full text link
    We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal

    Quantum computation with mesoscopic superposition states

    Get PDF
    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be published in Phys. Rev.
    • …
    corecore