26 research outputs found

    Reduced vertical displacement of the center of mass is not accompanied by reduced oxygen uptake during walking

    Get PDF
    Abstract The six determinants of gait proposed that the goal of gait is to minimize vertical displacement of the body’s center of mass (CoM) with the objective to optimize energy expenditure. On the contrary, recent investigations suggest that reduced vertical displacement leads to an increase in energy expenditure. However, these investigations had the included subjects deliberately changing their gait, which could bias the endpoint measures. The present study investigated the effect of reduced vertical displacement of the CoM on oxygen uptake and walking economy without imposing altered gait patterns. This was accomplished by having subjects walk on a curved treadmill and on a flat treadmill. Vertical displacement of the CoM (sacrum marker displacement), oxygen uptake, walking economy, stride characteristics and lower limb joint angles were measured. There were significant differences in stride characteristics and phase dependent differences in lower limb movement pattern between the two conditions which in size were comparable to the changes observed between different speeds. The vertical displacement of the CoM was significantly reduced on the curved treadmill. This was accompanied by an increase in oxygen uptake and walking economy. These results support recent assertions that the six determinants of gait do not serve to improve walking economy

    Polymeric strontium ranelate nonahydrate

    Get PDF
    The title compound, poly[[μ-aqua-tetraaqua{μ-5-[bis(carboxylatomethyl)amino]-3-carboxylatomethyl-4-cyanothiophene-2-carboxylato}distrontium(II)] tetrahydrate], [Sr2(C12H6N2O8S)(H2O)5]·3.79H2O, crystallizes with nine- and eight-coordinated Sr2+ cations. They are bound to seven of the eight ranelate O atoms and five of the water molecules. The SrO8 and SrO9 polyhedra are interconnected by edge-sharing, forming hollow layers parallel to (011). The layers are, in turn, interconnected by ranelate anions, forming a metal–organic framework (MOF) structure with channels along the a axis. The four water molecules not coordinated to strontium are located in these channels and hydrogen bonded to each other and to the ranelates. Part of the water H atoms are disordered. The compound dehydrates very easily and 0.210 (4) water molecules out of nine were lost during crystal mounting causing additional disorder in the water structure

    Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running

    Get PDF
    Background: As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners’ responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Methods: Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h−1 for men and 12.9, 14.5, and 16.1 km·h−1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Results: Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p \u3c 0.02) and flight duration (p \u3c 0.01) and decreased stride rate (p \u3c 0.01) and contact time (p \u3c 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO2) relative to BWS (p \u3c 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p \u3e 0.05), and small-large effects on HR and RPE (p \u3c 0.01). There were trivial-small differences in VE, respiratory frequency, HR, and RPE for a given VO2 across various BWS (p \u3e 0.05). Conclusions: The results indicate the male and female distance runners have similar physiological and biomechanical responses to LBPPT running. Overall, the biomechanical changes during LBPPT running all contributed to less metabolic cost and corresponding physiological changes. Keywords: AlterG, Lower-body positive pressure, Body weight support, Anti-gravity, Running, Stride characteristics, Physiological characteristics, Metabolic demand, Oxygen demand, Oxygen cos

    Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    Get PDF
    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking

    Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics

    Get PDF
    The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from healthy subjects during walking and running at two speeds; one low speed close to the preferred walking speed and one high speed close to the preferred running speed. LyE_R and LyE_W were calculated using four different time series normalization procedures. The performance of the algorithms were evaluated based on their ability to return relative low values for slow walking and fast running and relative high values for fast walking and slow running. Neither of the two algorithms outperformed the other; however, the effectiveness of the two algorithms was highly dependent on the applied time series normalization procedure. Future studies using the LyE_R should normalize the time series to a fixed number of strides and a fixed number of data points per stride or data points per time series while the LyE_W should be applied to time series normalized to a fixed number of data points or a fixed number of strides

    To walk or to run - a question of movement attractor stability

    Get PDF
    During locomotion, humans change gait mode between walking and running as locomotion speed is either increased or decreased. Dynamical systems theory predicts that the self-organization of coordinated motor behaviors dictates the transition from one distinct stable attractor behavior to another distinct attractor behavior (e.g. walk to run or vice versa) as the speed is changed. To evaluate this prediction, the present study investigated the attractor stability of walking and running across a range of speeds evoking both self-selected gait mode and non-self-selected gait mode. Eleven subjects completed treadmill walking for 3 min at 0.89, 1.12, 1.34, 1.56, 1.79, 2.01, 2.24 and 2.46 m s−1 and running for 3 min at 1.79, 2.01, 2.24, 2.46, 2.68, 2.91, 3.13 and 3.35 m s−1 in randomized order while lower limb joint angles and sacrum displacements was recorded. Attractor stability was quantified by continuous relative phase and deviation phase of lower limb segment angles, and the largest Lyapunov exponent, correlation dimension and movement variability of the sacrum marker displacement and the hip, knee and ankle joint angles. Lower limb attractor stability during walking was maximized at speeds close to the self-selected preferred walking speed and increased during running as speed was increased. Furthermore, lower limb attractor stability was highest at a particular gait mode closest to the corresponding preferred speed, in support of the prediction of dynamical systems theory. This was not the case for the sacrum displacement attractor, suggesting that lower limb attractor behavior provides a more appropriate order parameter compared with sacrum displacement
    corecore