31,390 research outputs found
INTRINSIC DEFECT ENERGIES OF LITHIUM HYDRIDE AND LITHIUM DEUTERIDE CRYSTALS
A theoretical study has been made of the defect structure of lithium hydride and lithium deuteride. A potential model is obtained describing the statics and dynamics of these crystals. Intrinsic defect energies are calculated using the Harwell HADES program which is based on a generalised Mott-Littleton method. The results are in good agreement with the experimental data, and suggest that the vacancy and interstitial migration mechanisms of anions and cations are all comparable in their contribution to ionic conduction
Operational Trans-Resistance Amplifier Based Tunable Wave Active Filter
In this paper, Operational Trans-Resistance Amplifier (OTRA) based wave active filter structures are presented. They are flexible and modular, making them suitable to implement higher order filters. The circuits implement the resistors using matched transistors, operating in linear region, making them well suited for IC fabrication. They are insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. As an application, a doubly terminated third order Butterworth low pass filter has been implemented, by substituting OTRA based wave equivalents of passive elements. PSPICE simulations are given to verify the theoretical analysis
A Ballistic Graphene Cooper Pair Splitter
We report an experimental study of Cooper pair splitting in an encapsulated
graphene based multiterminal junction in the ballistic transport regime. Our
device consists of two transverse junctions, namely the
superconductor/graphene/superconductor and the normal metal/graphene/normal
metal junctions. In this case, the electronic transport through one junction
can be tuned by an applied bias along the other. We observe clear signatures of
Cooper pair splitting in the local as well as nonlocal electronic transport
measurements. Our experimental data can be very well described by using a
modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam
splitter model
Stress buildup in the Himalaya
The seismic cycle on a major fault involves long periods of elastic strain and stress accumulation, driven by aseismic ductile deformation at depth, ultimately released by sudden fault slip events. Coseismic slip distributions are generally heterogeneous with most of the energy being released in the rupture of asperities. Since, on the long term, the fault's walls generally do not accumulate any significant permanent deformation, interseismic deformation might be heterogeneous, revealing zones of focused stress buildup. The pattern of current deformation along the Himalayan arc, which is known to produce recurring devastating earthquakes, and where several seismic gaps have long been recognized, might accordingly show significant lateral variations, providing a possible explanation for the uneven microseismic activity along the Himalayan arc. By contrast, the geodetic measurements show a rather uniform pattern of interseismic strain, oriented consistently with long-term geological deformation, as indicated from stretching lineation. We show that the geodetic data and seismicity distribution are reconciled from a model in which microseismicity is interpreted as driven by stress buildup increase in the interseismic period. The uneven seismicity pattern is shown to reflect the impact of the topography on the stress field, indicating low deviatoric stresses (<35 MPa) and a low friction (<0.3) on the Main Himalayan Thrust. Arc-normal thrusting along the Himalayan front and east-west extension in southern Tibet are quantitatively reconciled by the model
Robust and Fast 3D Scan Alignment using Mutual Information
This paper presents a mutual information (MI) based algorithm for the
estimation of full 6-degree-of-freedom (DOF) rigid body transformation between
two overlapping point clouds. We first divide the scene into a 3D voxel grid
and define simple to compute features for each voxel in the scan. The two scans
that need to be aligned are considered as a collection of these features and
the MI between these voxelized features is maximized to obtain the correct
alignment of scans. We have implemented our method with various simple point
cloud features (such as number of points in voxel, variance of z-height in
voxel) and compared the performance of the proposed method with existing
point-to-point and point-to- distribution registration methods. We show that
our approach has an efficient and fast parallel implementation on GPU, and
evaluate the robustness and speed of the proposed algorithm on two real-world
datasets which have variety of dynamic scenes from different environments
- …
