12 research outputs found

    Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity.

    Get PDF
    Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor) protein Membrin (encoded by the GOSR2 gene) cause progressive myoclonus epilepsy (PME). Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME

    Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy

    No full text
    Successive fusion events between transport vesicles and their target membranes mediate trafficking of secreted, membrane- and organelle-localised proteins. During the initial steps of this process, termed the secretory pathway, COPII vesicles bud from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe neurological disorder characterised by ataxia, myoclonus and seizures in the absence of significant cognitive impairment. However, given the ubiquitous and essential function of ER-to-Golgi transport, why GOSR2 mutations cause neurological dysfunction and not lethality or a broader range of developmental defects has remained an enigma. Here we highlight new work that has shed light on this issue and incorporate insights into canonical and non-canonical secretory trafficking pathways in neurons to speculate as to the cellular and molecular mechanisms underlying GOSR2 PME

    Mechanisms and consequences of carbamoylation.

    No full text
    Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load
    corecore