27 research outputs found

    Time-domain observation of interlayer exciton formation and thermalization in a MoSe2/WSe2 heterostructure

    Get PDF
    : Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization

    Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene-Dye Nanohybrid

    Get PDF
    The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the pi-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites

    Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy

    Get PDF
    [Image: see text] Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS(2)/MoS(2) have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS(2)/MoS(2) HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT

    Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene-Dye Nanohybrid

    Get PDF
    The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites

    Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics

    No full text
    There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the “waiting time” in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies

    Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy

    No full text
    [Image: see text] Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS(2)/MoS(2) have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS(2)/MoS(2) HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT

    Dysplastic cells in cytological cervical samples show a high incidence of chromosomal abnormalities

    No full text
    Chromosomal abnormalities are frequent in most cervical cancers. Amplifications of both the 3q26 (TERC) and 8q24 (MYC) loci have been shown to be prevalent in both high-grade lesions and invasive cervical carcinoma. Most of these studies have looked at either the histological sample or at the entire cytological population of cells. We have developed a Papanicolaou (Pap) destaining method that allows for the accurate analysis of individual cells that were previously identified by cytopathology as dysplastic. The application of fluorescence in situ hybridization (FISH) was then implemented to determine the chromosomal status of the dysplastic cells in the samples and correlate the two events. Chromosomal abnormality is over a thousand times more frequent in dysplastic cells compared with their morphologically normal counterparts
    corecore