119 research outputs found

    Performance analysis of a palletizing system

    Get PDF
    When designing the layout of the material handling system for a warehouse there is a need for the analysis of overall system performance. Since warehouses are typically very large and complex systems it is infeasible to build a simulation model for the entire system. Our approach is to divide the system into subsystems that are small enough to be captured in simulation models. These models can then later be assembled to acquire a simulation model of the entire system. In this case study we assess the feasibility of this approach by creating a simulation model of a part of a warehouse and verify whether it can be used to embed it in a larger simulation model. The subsystem we use for our case study is a container unloading and automatic palletizing system. This system is chosen because it has already been studied extensively using another simulation tool. We also do a performance analysis of this system in order to come to an optimal layout for this subsystem as well as to reproduce the results of the earlier study for validation. For our performance analysis we created a chi model of the unloading and palletizing area. The process algebra chi has been extensively used for modeling and simulation of real-time manufacturing systems. Our case study is also used as a means to assess the suitability of chi for modeling and simulation in a logistics environment. Our experiments resulted in roughly the same outcomes as the earlier study. It turns out that for the required throughput the layout chosen in that study is optimal. We also concluded that chi is perfectly suitable for modeling logistic systems. Considering the extensive time it takes to run simulations of a rather small part of a warehouse using chi, we conclude that it is infeasible to perform simulations of entire warehousing systems by integrating the simulation models of all subsystems into one simulation model. To overcome this problem, aggregate modeling can be used

    A Power-Efficient, Low-Distortion Variable Gain Amplifier Consisting of Coupled Differential Pairs

    Get PDF
    Abstract-A variable gain amplifier incorporating a plurality of coupled differential pairs has been designed in a bipolar technology. By applying variable offset voltages to these differential pairs, the overall gain of the system can be varied. The linear input region is inversely proportional to gain, making the amplifier very well suited for automatic gain control circuits. Furthermore, the gain of the proposed amplifier is 0-25 dB, the signal bandwidth is 35 MHz, and the output IP3 is 24-30 dBm. It operates from a 5-V power supply and dissipates 40 mW. The active chip area is 0.15 mm 2 in a 1-m bipolar technology

    Saltmarsh archives of vegetation and land use change from Big River Marsh, SW Newfoundland, Canada

    Get PDF
    Pollen and plant macrofossils are often well-preserved in coastal sediments, providing a palaeoenvironmental record of sea-level and landscape change. In this study, we examine the pollen and plant macrofossil assemblages of a well-dated saltmarsh sediment core from southwest Newfoundland, Canada, to establish recent coastal vegetation and land use change, to increase the knowledge of anthropogenic activities in the area and develop pollen chronozones for reconstructing marsh accumulation rates and to examine the representation of plant macrofossil remains in the wetland pollen profile. Grouping the pollen record into upland and wetland assemblages allows local events related to hydrological change to be separated from landscape-scale changes. The wetland pollen and plant macrofossil records indicate a general acceleration in sea-level rise ca. ad 1700. The sedge pollen and plant macrofossil records attest to multiple phases of rhizome encroachment during inferred periods of marine regression. Two chronozones are identified from the upland pollen profile; the first associated with the settlement of St. George’s Bay ca. ad 1800, signalled by increases in Plantago lanceolata and Ambrosia pollen; the second with the permanent settlement of the Port au Port peninsula ca. ad 1850, indicated by increased P. lanceolata and Rumex pollen. Comparison of the plant macrofossil and wetland pollen profiles highlights the underrepresentation of grass pollen preserved in the saltmarsh sediments and a need for further analysis of the zonation, pollen dispersal and macrofossil representation of sedge species in saltmarshes

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Overview of T and D-T results in JET with ITER-like wall

    Get PDF
    In 2021 JET exploited its unique capabilities to operate with T and D–T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D–T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements—new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14 MeV neutron yield monitors—as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D–T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D–T plasmas to date and expanding our understanding of isotopes and D–T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D–T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D–T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in (Litaudon et al Nucl. Fusion accepted), while JET experience on T and D–T operations is presented in (King et al Nucl. Fusion submitted)

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    Comparing pedestal structure in JET-ILW H-mode plasmas with a model for stiff ETG turbulent heat transport

    Get PDF
    A predictive model for the electron temperature profile of the H-mode pedestal is described, and its results are compared with the pedestal structure of JET-ILW plasmas. The model is based on a scaling for the gyro-Bohm normalized, turbulent electron heat flux qe/qe,gB resulting from electron temperature gradient (ETG) turbulence, derived from results of nonlinear gyrokinetic (GK) calculations for the steep gradient region. By using the local temperature gradient scale length L-Te in the normalization, the dependence of q(e)/q(e,g)B on the normalized gradients R/L-Te and R/(Lne) can be represented by a unified scaling with the parameter eta(e) = L-ne/L-Te, to which the linear stability of ETG turbulence is sensitive when the density gradient is sufficiently steep. For a prescribed density profile, the value of R/L-Te determined from this scaling, required to maintain a constant electron heat flux qe across the pedestal, is used to calculate the temperature profile. Reasonable agreement with measurements is found for different cases, the model providing an explanation of the relative widths and shifts of the T-e and n(e) profiles, as well as highlighting the importance of the separatrix boundary conditions. Other cases showing disagreement indicate conditions where other branches of turbulence might dominate.This article is part of a discussion meeting issue "H-mode transition and pedestal studies in fusion plasmas'
    • …
    corecore