

Performance analysis of a palletizing system

Citation for published version (APA):
Amstel, van, M. F., Plassche, van de, E., Hamberg, R., Brand, van den, M. G. J., & Rooda, J. E. (2007).
Performance analysis of a palletizing system. (SE report; Vol. 2007-09). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/76cdf5b9-c0ae-4e0e-897d-9b4efac8ec01

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2007-09

Performance Analysis
of a

Palletizing System

M.F. van Amstel, E. van de Plassche, R. Hamberg,
M.G.J. van den Brand, J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2007-09
Eindhoven, June 2007

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

When designing the layout of the material handling system for a warehouse there is a need
for the analysis of overall system performance. Since warehouses are typically very large
and complex systems it is infeasible to build a simulation model for the entire system. Our
approach is to divide the system into subsystems that are small enough to be captured in
simulation models. These models can then later be assembled to acquire a simulation model
of the entire system.

In this case study we assess the feasibility of this approach by creating a simulation model
of a part of a warehouse and verify whether it can be used to embed it in a larger simulation
model. The subsystem we use for our case study is a container unloading and automatic
palletizing system. This system is chosen because it has already been studied extensively
using another simulation tool. We also do a performance analysis of this system in order to
come to an optimal layout for this subsystem as well as to reproduce the results of the earlier
study for validation. For our performance analysis we created a χ model of the unloading
and palletizing area. The process algebra χ has been extensively used for modeling and
simulation of real-time manufacturing systems. Our case study is also used as a means to
assess the suitability of χ for modeling and simulation in a logistics environment.

Our experiments resulted in roughly the same outcomes as the earlier study. It turns out that
for the required throughput the layout chosen in that study is optimal. We also concluded that
χ is perfectly suitable for modeling logistic systems. Considering the extensive time it takes to
run simulations of a rather small part of a warehouse using χ, we conclude that it is infeasible
to perform simulations of entire warehousing systems by integrating the simulation models
of all subsystems into one simulation model. To overcome this problem, aggregate modeling
can be used.

2

Contents

Abstract 1

Contents 3

1 Introduction 5

2 Warehouse Architecture 7
1 Warehouses . 7
2 Reference Warehouse . 8
3 Design Approach . 9

3 The Receiving Area 11
1 Process . 12
2 Requirements . 13

4 Modeling the Receiving Area 17
1 Architecture . 17
2 Processes . 19
3 Reflections on the Modeling Process . 23

5 Experiments 29
1 Series of Experiments . 29
2 Experimental Results . 30

6 Conclusions and Future Work 39
1 Conclusions . 39
2 Directions for Further Research . 40

Bibliography 41

A Detailed Requirements 43
1 High-Level Requirements . 43
2 Detailed Requirements . 44

B χ Model 47

C Constants Pre-processor 57

D Data Sets 59

3 Contents

4 Contents

Chapter 1

Introduction
Modern warehouses are very large and complex systems. When designing the layout of the
material handling system of a warehouse the customer has to be convinced that a proposed
solution meets his required performance demands. It is necessary that this can be estab-
lished by means of a performance analysis. Because of its size and complexity it is infeasible
to do a performance analysis of an entire warehousing system whilst keeping all the details.
To overcome this problem we consider a warehouse as a system composed of multiple subsys-
tems, which are sufficiently small to capture in a simulation model suitable for performance
analyses. These simulation models can then be combined such that a performance analysis
of the warehousing system as a whole can still be performed.

This report describes the performance analysis of a subsystem in a warehouse: container
unloading and automatic palletizing. The goal of this analysis is twofold. First, we will as-
sess the feasibility of constructing a simulation model for an entire warehousing system by
assembling the simulation models of smaller subsystems. Second, we attempt to come to an
optimal layout for this subsystem by comparing performance indicators like throughput and
flow time of different layouts. This specific unloading and palletizing subsystem has been
selected because it was studied before by other means (see [DGHV01]) and it has been built
in the real world. Hence, our layouts are variations of the real world layout.

For the performance analysis we use a simulation model which we create using χ [vBMR+06,
VR06]. The process algebra χ is specifically designed for modeling manufacturing systems
where the focus lies on processing rather than on transportation. We also shortly evaluate
the applicability of χ in a logistics environment where the emphasis is more shifted towards
transportation.

The analysis has been conducted in the context of the FALCON project [FAL06]. The FAL-
CON project addresses the development of techniques and tools for the design and imple-
mentation of professional logistics systems. As a research driver, the project concentrates on
a new generation of distribution centers and warehouses with a maximum achievable degree
of automation.

The remainder of this report is structured as followed. Chapter 2 gives an overview of a
generic warehouse architecture to provide the necessary context. In Chapter 3 the function

5

of the receiving area is elaborated as well as the requirements for the palletizing system are
given. Chapter 4 describes the architecture and implementation of our χ model and gives a
short reflection on the modeling process. Chapter 5 describes the experiments we performed
using our simulation model. Conclusions and directions for further research are formulated
in Chapter 6.

6 Introduction

Chapter 2

Warehouse Architecture
This chapter gives an overview of warehouse activities illustrated by a reference architecture.
Also, some light is shed on the most important parameters that should be considered in a
warehouse design.

1 Warehouses

In a warehouse goods are received, stored and sent, optionally supplemented by manipula-
tion of the arrangement and time in which the goods are requested. Warehouses exist in
all shapes and sizes, ranging from simple storage at the end of a production line to enor-
mous plants where airplanes exchange time-critical parcels in transit. Due to differences in
business aspects and product characteristics, no two warehouse are the same.

In this report, we consider warehouses in a distributing logistics chain. In this type of ware-

W
ar

eh
ou

se

Ordered Goods

Delivery Order

C
us

to
m

er
C

us
to

m
er

C
us

to
m

er

S
up

pl
ie

r
S

up
pl

ie
r

S
up

pl
ie

r

Supplied Goods

Returned GoodsReturned Goods

Supply Order

Figure 2.1: Warehouse in a distributing logistics chain

7 Warehouses

G1 B MCLo Pal
Cas

B M
Cag

Ite

G3 B MTLo Cag B M

Receiving Area Sortation Area Shipping Area

G2 TLo B M

B M
Pal

B M

B M
Cas

Ite

B M OTo B M

Dol

TLo E

Figure 2.2: Global processes in a warehouse

houses the main objective is balancing the asynchronous supply and demand of goods as
shown in Figure 2.1. This kind of warehouses may require massive bulk storages when sup-
ply and demand are strongly out of phase.

2 Reference Warehouse

When designing and analyzing a warehouse, its internal processes should be known. For this
reason, a reference warehouse has been defined (see Figure 2.2). In this chapter the internals
of the warehouse under consideration are described.

In general, three major process areas in warehouses can be identified:

1. Receiving area

2. Sortation area

3. Shipping area

The following descriptions of receiving, sortation and shipping area are related to Figure 2.2.
The arrows are labeled with units of transportation.

The receiving area comprises the reception of goods from suppliers and, optionally, returns
from customers. The received goods may reside in shipping containers, on pallets or in
cages, but may also be supplied in bulk. The receiving area transforms received goods into
internal warehouse storage units. The considered receiving area receives goods supplied in
cases stored in containers (CLo, names are shown in Figure 2.2), pallets (Pal) supplied in
trucks (TLo) and loose items packed in cages . Usually, this area does not contain a storage
facility other than internal synchronization buffers with the next area. The received goods
are checked and verified with the delivery orders.

The sortation area contains the major part of generic goods storage. Storage of goods in the
reference warehouse is done in the form of pallet storage, case storage and storage on item
level. Items are the smallest form of goods handled in a warehouse. After receiving an order,
this area will transform the generic, non-customer order specific goods collection into cus-
tomer order specific goods collections. This is called order picking and can be performed on
all levels of internal units. The cases (Cas) are picked into cages (Cag). Order totes (OTo) are
introduced to contain the picked items (Ite). The reference warehouse only handles picking
of cases and items, implying a de-stacking of pallets.

8 Warehouse Architecture

Order consolidation, packaging and marshalling of shipments is done in the shipping area.
Here, goods belonging to an order are grouped into shipping units, awaiting shipment to the
customer. Order totes are grouped to form dollies (Dol) and, together with the cages form
truck loads (TLo).

The reference warehouse can be classified as large, with a throughput of around one million
order lines per day, each containing one to several items. The typical buffer capacity of this
warehouse is equivalent to 105 pallet loads.

3 Design Approach

The design of a warehouse is strongly affected by the following indicators [LR06] as they have
a high influence on performance and investment costs:

• Throughput δ

• Flow time ϕ

• Floor space fs

Derived from the overall flow time (i.e., the time that goods reside in the warehouse) and
throughput, the minimal buffer capacity can be determined. Consequently, a distinction can
be made in flow time for goods received and moved into the buffer, resting time in the buffer,
and flow time for goods extracted from the buffer and sent to the customer. As a consequence
of the above required performance, initial investment costs and operational costs determine
the feasibility and level of automation in a warehouse.

Designing and analyzing a warehouse requires good understanding of relevant processes and
a thorough knowledge of possible solutions. Because of the number of concurrent processes
within a warehouse, a simple quantification of design space budget per process can not be
given (e.g. cost, floor consumption, required capacity etc.). For this reason, theoretical de-
scriptions and models can give insight in the quality of a design. The level of achievable detail
of these analyses is however limited by simulation processing power. Analyzing the reference
warehouse as a whole on a detailed level requires the availability of sufficient details of all
processes and is deemed to be a lot of work.

In this report, only a portion of the receiving area of the total warehouse is discussed in detail.
The analyzed area transforms container loads arriving at the warehouse dock doors into pallet
loads used in the bulk store. The goods flowing through this area are boxes.

9 Design Approach

10 Warehouse Architecture

Chapter 3

The Receiving Area

G1 B MCLo Pal
Cas

B M
Cag

Ite

G3 B MTLo Cag B M

Receiving Area Sortation Area Shipping Area

G2 TLo B M

B M
Pal

B M

B M
Cas

Ite

B M OTo B M

Dol

TLo E

Container Unloading and
Palletizing System

UPACLo Pal

UL PS M S P W

MP

Figure 3.1: The unloading and palletizing area in the context of the complete warehouse.

In this study a part of the receiving area has been modeled to analyze the performance of the
automatic palletizing process. In Figure 3.1 it is indicated how this relates to the schematic,
functional view on the complete warehouse. In this chapter a description of the area under
study is given, along with its behavior, i.e., a high level specification or set of requirements

11

Figure 3.2: Layout of the relevant part of the receiving area

(expressed in natural language). This serves as a starting point for the modeling activities
described in Chapter 4.

1 Process

The main activity performed in the receiving area is palletization. The part of the receiving
area relevant for our model (the palletization area) is schematically depicted in Figure 3.2.
The goods enter this area in containers and leave it on wrapped pallets.

Containers ready for unloading are positioned at one of the container positions in the receiv-
ing area. How containers are allocated to these unloading positions is beyond the scope of
this analysis. Therefore we will assume that there is an infinite number of containers waiting
to be assigned to the first available unloading dock. Each container typically contains hun-
dreds of boxes, the type of which belongs to a limited number of stock keeping units (SKU’s).
A SKU is a unique article number.

When a container is ready to be unloaded, one of the extendable conveyors will be assigned to
it whenever it becomes available. An extendable conveyor can move to any unloading position
as long as it is not in use and does not traverse another extendable conveyor. The operator
working on the extendable conveyor will unload the container. This is done by first announc-
ing the SKU type of the first box that will be unloaded to the control system, followed by
the physical unloading. When the operator has unloaded all boxes of an SKU type, he will
announce the next SKU type and start unloading again. This is repeated until the container
has completely been depleted.

12 The Receiving Area

After being transported by the extendable conveyor, boxes reach the take-away conveyor (in
short: pre-sorter). For each SKU it is known whether the boxes1 can be palletized auto-
matically. For boxes that can be palletized automatically, a reservation request is sent to the
palletizers. If there is a palletizer that has enough buffer lanes available to buffer boxes for
a whole pallet, all boxes of this pallet-to-be will be sent to this palletizer via the sort-merge
conveyor (in short: sorter). Alternatively, when not enough buffer lanes are available or the
characteristics of the SKU forbid it to be palletized automatically, the boxes of the pallet-to-be
are sent to the manual exit located near the pre-sorter. Here, an operator will manually stack
the boxes on pallets. The process of manual palletizing is beyond the scope of this analysis.

There are more unloading positions than there are palletizers and it should be possible for
all boxes to travel to any palletizer. Therefore, boxes are merged on a conveyor and sorted out
into the appropriate palletizer buffer lanes. This occurs at the sorter. This sorter allows boxes
entering the system at any unloading position to travel to any of the palletizers.

When all boxes for a pallet are present in the appropriate buffer lanes the palletizer can
create a new pallet. It will start by self-adjusting its stacking algorithm depending on the
characteristics of the SKU it has to handle (box sizes, number of layers, stability, etc.). Boxes
will be fed from the buffer lanes to the palletizer and the actual palletizing can start.

The final step in the receiving area is wrapping the newly-stacked pallets with foil to ensure
stability in the processes to follow.

2 Requirements

This section contains the requirements for the palletizing concept as extracted from [DGHV01].
In [DGHV01] two possible solutions are described. We only consider the solution using layer-
palletizers. Note that in this section the layout is considered to be fixed. In the experiments
described in Chapter 5 we will also vary the layout parameters.

Tables with detailed requirements can be found in Appendix A.

As described in Section 3.1, the receiving area covers the following operations (see also Fig-
ure 3.3):

1. Unloading boxes (U),

2. Pre-sorting boxes to manual or automatic palletizing (PS),

3. Merging automatically palletizable boxes on a take-away conveyor (M),

4. Sorting automatically palletizable boxes to buffer lanes (S),

5. Automatically palletize automatically palletizable boxes (P),

6. Manually palletize non-automatically palletizable boxes (MP),

7. Wrapping full pallets (W).

1Throughout the document SKU means boxes containing items of a certain SKU type.

13 Requirements

U

P S M S P W

M P

G

E

Figure 3.3: Process

2.1 Container Docking and Extendable Conveyors

To unload the containers, twelve unloading positions and twelve take-away conveyors are avail-
able. The unloading positions are connected to the take-away conveyors by eight moveable
extendable conveyors. Containers can only be unloaded when the unloading position is con-
nected to a take-away conveyor, this means only eight containers can be unloaded simultane-
ously. The other four unloading positions are used to replace empty containers for full ones.
At start-up, the extendable conveyors are placed at unloading positions 2, 3, 5, 6, 8, 9, 11, and
12.

When a container is empty, the extendable conveyor used for unloading it will move to the
nearest unloading position that has a full container available. If multiple full containers
are available at the same time at the same distance, the extendable conveyor will go to the
unloading position left from its current position. Note that extendable conveyors cannot cross
each other.

The time needed to change an extendable conveyor from one unloading dock to another is
less than the time needed to replace an empty container with a full one. The durations used
for these operations are also taken from [DGHV01], they are listed in Table 3.1.

Operation Duration (seconds)
Changing extendable conveyor between doors 120
Replacing container at a door 500

Table 3.1: Operation times

2.2 Unloading Containers

When a container and an extendable conveyor are in place, an operator will start unloading
the container. If a container contains boxes of more than one SKU the operator will first
unload all items of SKU 1, then all items of SKU 2, etc.

Before an operator can start unloading the boxes of an SKU, the WMS/WCS will have to be
informed what SKU is going to be unloaded. This is done by the operator via a computer
terminal near the extendable conveyor and takes two minutes. Once a new SKU is reported,
the operator will unload all boxes of this SKU at a constant rate. The unloading rates are
fixed, but differ for small and large boxes.

2.3 Pre-sorting

At the end of the extendable conveyors, a luffing conveyor is used to pre-sort boxes to either
manual or automatic palletizing. (A luffing conveyor can direct boxes in two directions.)
Manual palletizing is outside the scope of this study.

14 The Receiving Area

There are two possible reasons to send boxes of a certain pallet-to-be to manual palletizing:

1. The shape of boxes of that SKU type is such that it is impossible to automatically pal-
letize them.

2. It is impossible to make a buffer reservation at any of the palletizers because none of
them has enough free buffer lanes available to buffer a complete pallet load of those
boxes.

Boxes for a pallet that can be palletized automatically, are allocated to the required number of
buffer lanes and travel to them via conveyors.

2.4 Palletizing

There are three layer palletizer machines and each of these machines has seven buffer lanes
feeding boxes to it. A palletizing machine can palletize only one pallet at a time. Table 3.2
shows the equipment capacities.

Subsystem Amount Design capacity
Layer palletizer machine 3 1500 boxes/machine/hour
Buffer lanes 7 per machine = 21 500 boxes/lane/hour
Wrappers 1 per machine = 3 90 pallets/wrapper/hour

Table 3.2: Layer palletizer equipment capacities

It is required that the system can automatically palletize 3400 boxes per hour on average.

2.5 Operating Concepts

SKU’s are allocated dynamically to a palletizer, i.e., boxes unloaded at any of the twelve un-
loading positions can be handled by any of the palletizing machines. The allocation of an
SKU to a palletizer machine depends on the required number of buffer lanes to buffer a full
pallet load of boxes of that SKU. If multiple palletizers have sufficient buffer lanes available,
the system shall select the palletizer with the maximum number of free buffer lanes. Con-
sideration should also be taken to balance allocation of SKU’s requiring a lot of buffers with
SKU’s requiring little buffers. This requires a degree of planning to maximize automatic
palletization and avoid boxes being manually palletized due to insufficient buffer lanes being
available.

Under normal conditions the system loads precisely enough boxes of an SKU into the allo-
cated buffer lanes to create a full pallet prior to palletizing. However, if an operator informs
the system of an SKU changeover, the palletizer finishes the buffered boxes of the previous
SKU as a partial pallet.

Furthermore, there are a number of factors which should also be taken into account:

• Overflow of buffers must be avoided as recirculation around the sorter has not been
accounted for.

• Pallet pattern changeover should be minimized to reduce changeover time.

15 Requirements

• The system needs to have access to a database which stores SKU palletizing properties,
for example for determining the required number of buffer lanes.

16 The Receiving Area

Chapter 4

Modeling the Receiving Area
This chapter describes the steps to come to the χ simulation model. We start by designing an
architecture for the receiving area in terms of communicating parallel processes. Thereafter
we describe the processes itself in more detail. The last section of this chapter is devoted to
the modeling process.

1 Architecture

We create the model architecture in two phases. First we design a global architecture which
we later refine to a more detailed architecture.

The requirements of Section 3.2 state specific amounts of extendable conveyors, palletizers
and buffer lanes per palletizer. We abstract from these numbers as the goals of this project is
to find the optimal combination of these structural parameters.

1.1 Global Architecture

In Figure 4.1 the global architecture of the system is depicted. Each of the components of the
model is an autonomous process that communicates over synchronous channels with other
processes. Notice the resemblance with the process steps depicted in Figure 3.3. However,
the division of the process steps from Figure 3.3 among χ processes is somewhat different:
unloading and pre-sorting is performed in the unload area, merging and global sorting is
performed by the sorter, and detailed sorting, palletizing and wrapping is performed in the
palletize area.

In Figure 4.1 it can be seen that a generator process and two exit processes are added. We do
this to create a stand-alone simulation system. Notice also the presence of a database. The
database is added because it is necessary to provide the simulation model with the required
data and its presence is one of the requirements, see Appendix A.2.4.

17 Architecture

C o n t a i n e r
G e n e r a t o r

U n l o a d
A r e a S o r t e r P a l l e t i z e

A r e a
P a l l e t
E x i t

M a n u a l
E x i t

D a t a b a s e

Figure 4.1: Global architecture

S i n g l e
C o n t a i n e r
G e n e r a t o r

S o r t e r
C o n t r o l

P a l l e t
E x i t

M a n u a l
E x i t

P r e s o r t e r
C o n t r o l

P o s t s o r t e r
C o n t r o l

W r a p p e r

E x t e n d a b l e
C o n v e y o r

D a t a b a s e

C o n t a i n e r
U n l o a d e r

P r e s o r t e r
G o o d s

S o r t e r
C o n t r o l

P o s t s o r t e r
G o o d s B u f f e r l a n e P a l l e t i z e r

Figure 4.2: Detailed architecture

1.2 Detailed Architecture

The detailed architecture is depicted in Figure 4.2. The ordinary arrows represent material
flow and the dashed arrows represent data flow.

In the real world, material and control are two separated flows, therefore we also decide to
split the material and control flow in our model where possible. Another reason for this
separation is that goods in the system are subject to delays, whereas control data can travel
infinitely fast. All control processes are again roughly divided into two parts, one that handles
reservations at the palletizers and one for taking routing decisions.

The container generator of Figure 4.1 consists of multiple ‘single container generators’. Each
of these ‘single container generators’ represents an infinite row of containers standing in
line at an unloading position waiting to be unloaded. Because a single container generator
is coupled to an unloading position, there need to be as many container generators in the
system as there are unloading positions.

The unload area from the global architecture is a set of ‘single unload areas’ and a set of ex-
tendable conveyors. A ‘single unload area’ consists of a container unloader and a pre-sorter.
Because pre-sorters cannot be shared there needs to be a one–to–one mapping between pre-
sorters and container unloaders. The extendable conveyors are added as separate processes.
This is done because the coordination of extendable conveyors is independent of the con-

18 The Receiving Area

tainer unloaders but not timeless.

The palletize area is also divided into multiple ‘single palletize areas’. Each ‘single palletize
area’ consists of a post-sorter, a number of buffer lanes, a palletizer, and a wrapper. The
post-sorter is introduced for simplifying buffer reservations and to make the system more
modular. The post-sorter does not exist in the original system, as can be seen in Figure 3.2.
Therefore the post-sorter does not incur any delay on the boxes traveling through it. In the
original system, the 21 buffer lanes are directly connected to the sorter in three groups of
seven lanes (see Figure 3.2). Our post-sorter handles this division in groups. In this way the
sorter does not have to know to which palletizer each buffer lane belongs, it just forwards any
reservation request to the post-sorters. Moreover, it is now possible to simply add a palletizer
with its own buffer lanes and post sorter without having to adapt the internals of the sorter. It
is even relatively easy to create heterogeneous palletizers by adding or removing any number
of buffer lanes.

2 Processes

This section describes in detail how all the processes depicted in Figure 4.2 are implemented
in a χ model. The model is created using χ version 1.0, the listing is found in Appendix B.

2.1 Database

The database is initialized with two input files, one contains SKU data and the other the
division of boxes over containers. The database can be queried for the following information:

• contents of a container,

• pallet factor of an SKU (the number of boxes on a full pallet),

• length of an SKU,

• whether an SKU can be palletized automatically,

• the time it takes to automatically palletize n boxes of a certain SKU, where n is an input
parameter.

The data we use to initialize the database can be found in Appendix D.

2.2 Single Container Generator

The single container generator process represents a single unloading position. It generates
container contents from a data set.

All instances of the single container generator are connected to two other processes, a con-
tainer identifier generator (CidG) and a pallet identifier generator (PidG) (see Figure 4.3).
These two processes generate unique identifiers for containers and pallets respectively. A
container is generated as follows. First, a container identifier is acquired from the container
identifier generator. This identifier is then used to retrieve the contents of a container from
the database. Containers are generated in zero simulation time, this implies there are always
containers available for unloading and thus the system is always under peak load.

19 Processes

S i n g l e
C o n t a i n e r
G e n e r a t o r

P a l l e t
i d

G e n e r a t o r
C o n t a i n e r

i d
G e n e r a t o r

S i n g l e
C o n t a i n e r
G e n e r a t o r

S i n g l e
C o n t a i n e r
G e n e r a t o r

Figure 4.3: Container generator

The single container unloader can be replicated as often as needed to simulate multiple un-
loading positions. Note that for every unloading position an unloading area is required, see
Section 4.1.2.

We choose to create pallets (virtually) before boxes go into the palletizing system. So actually,
a container is a collection of virtual pallets. This is done to simplify routing and reservation
decisions further on in the process. Because pallets are created beforehand, a pallet identifier
is added to a box in the container generator process.

2.3 Container Unloader

A container unloader starts the unloading process by acquiring a container and an extendable
conveyor. The latter is possible as a parallel control process, part of the container unloader
administers the assignment of an extendable conveyor to an unload position. When an ex-
tendable conveyor is in place the unloading can start. Boxes travel from an unloading position
via an extendable conveyor to a pre-sorter.

In the container unloader the control and material flow are decoupled. For every new virtual
pallet the data about the boxes it contains is sent to the pre-sorter to make a reservation at a
palletizer for the boxes belonging to that virtual pallet.

When the last box of an SKU is encountered, this box is tagged with an identifier. This
identifier is also sent to the controller of the sorter such that it can distinguish the box from
other boxes. Whenever a box of a new SKU type is encountered during unloading a delay of
120 seconds is incurred, simulating the time it takes an operator to report an SKU changeover.

When a container is completely unloaded a delay of 500 seconds is incurred before the next
container can be unloaded. This delay simulates changing a container at an unloading posi-
tion.

2.4 Extendable Conveyors

The extendable conveyors act on the basis of their current position (i.e., a certain container
unloader position) and its target position. If these positions are different, the conveyor first
announces to the current container unloader that it is leaving, and moves towards the target
position, which takes 120 seconds. Subsequently, in both cases, it announces its availability

20 The Receiving Area

P r e - s o r t e r
C o n t r o l

S o r t e r
C o n t r o l

P o s t - s o r t e r
C o n t r o l

R e s e r v a t i o n r e q u e s t
 F r e e b u f f e r l a n e s r e q u e s t

 R e s e r v a t i o n s u c c e s / f a i l

X f r e e b u f f e r l a n e s
R e s e r v a t i o n

o n l y i f e n o u g h b u f f e r
l a n e s a r e a v a i l a b l e

Figure 4.4: Reservation process

to the container unloader where it resides. All extendable conveyors are initialized with the
same current and target positions, which are given in Section 2.1 of Chapter 3.

After the release signal is received from the unloading position, the extendable conveyor
computes its new target position. It does this by sending a request to the unloading position
to the left asking whether a conveyor is needed or not; if the answer is negative, it will send a
similar request to the unloading position to the right. Obviously, when a confirming answer is
received, the conveyor will set its target position to the corresponding unloading position. The
procedure is executed either in left-right order or in right-left order, both with 50% probability.

2.5 Pre-sorter

In the pre-sorter process boxes are pre-sorted to automatic or manual palletizing. The pre-
sorter is the first process in the chain that has a separate control and material process. The
control process is again divided into two functional parts, one part is concerned with reserva-
tions and the other one with routing.

When the container unloader announces that boxes for a new virtual pallet will be coming,
the pre-sorter first checks whether the characteristics of the SKU allow it to be palletized
automatically by querying the database. If it can be palletized automatically, the pre-sorter
tries to make a reservation at a palletizer by sending a message to the sorter. The sorter will
respond whether the reservation was successful. If no reservation has been made, either
due to the SKU’s characteristics or due to insufficient palletizer capacity, this will be stored
internally. Themessages exchanged between the processes involved in the reservation process
are depicted in the sequence diagram of Figure 4.4.

When a box arrives at the material process, the controller is asked whether the box has to be
palletized automatically or manually. If the controller was unable to make a reservation, the
box will travel to manual palletizing, else it will travel to the sorter.

2.6 Manual Exit

The manual exit process is nothing more than a simple exit process. It accepts boxes that
cannot be palletized automatically, either due to their characteristics or due to insufficient
capacity of the automatic palletizers.

Note, because manual palletizing is not taken into consideration this process will always be

21 Processes

able to accept boxes such that it does not influence the rest of the process.

2.7 Sorter

The sorter consists of a separate control and material process. Its task is to make reservations
at the palletizers and to route boxes from the pre-sorters to the appropriate post-sorter.

The sorter can receive reservation requests from pre-sorters. Upon receipt of such a reser-
vation request, a signal is sent to all post-sorters. The post-sorters will respond how many
buffer lanes are available at the palletizer they belong to. If there is no palletizer available
with enough free buffer lanes, the sorter will respond to the pre-sorter that a reservation can-
not be made. If there are one or more palletizers that have enough available buffer capacity,
the sorter will select one with the largest number of free buffer lanes and make a reservation
there to spread the work over the available palletizers. In case multiple palletizers have the
largest number of free buffer lanes, the one with the lowest identifier is selected. When a
reservation is made, the pre-sorter is informed that a reservation was successfully made. See
also Figure 4.4.

The sorter can also receive a message from an unloader containing the identity of the last box
of a certain SKU type. Whenever such a last box is encountered in the material process of
the sorter, the post-sorter that box will travel to is informed that the buffers assigned to the
virtual pallet to which the box belongs are filled when that box has arrived.

When a box arrives at the material process of the sorter it asks the controller to which post-
sorter it should go. The controller answers and the box is sent to the correct post-sorter with
a constant delay of 60 seconds simulating the time the box resides on the conveyor.

We abstract from the merge and sort algorithm in the sorter as a more detailed model of this
algorithm results in a too low performance of the simulation model. However, in practice it
turns out that the sorter is a possible bottleneck for overall system performance. To simulate
limited capacity, a minimum time distance of 0.6 seconds is incurred between subsequent
boxes. To ensure that this delay does not cause preceding processes to block, boxes can
always be accepted by the sorter. They are put in a queue and extracted according to the
aforementioned timing rules. This limits the capacity of the sorter to 3600/0.6 = 6000
boxes/hour. Of course this value can be changed, simulating different sorter capacities.

2.8 Post-sorter

The post-sorter is the last process in the chain with a separate control and material process.
The post-sorter is concerned with buffer reservations and directing boxes to the appropriate
buffer lanes.

To initiate a buffer reservation, the sorter sends a message to all post-sorters. The post-
sorters respond with how many buffer lanes its palletizer has available. Thereafter the sorter
may respond with a message indicating the number of buffers that need to be reserved for
boxes of a certain SKU type. If such a message arrives, the post-sorter will administer this
reservation. See also Figure 4.4.

The post-sorter can also receive a message from the sorter containing the identity of the last
box of a certain SKU type. Whenever such a last box is encountered in the material process
of the post-sorter it is known that all boxes for a pallet are present in a subset of the buffer
lanes. Now the palletizer will be informed that it can flush all buffers assigned to that pallet.

22 The Receiving Area

On reception of a box, the post-sorter asks its controller to which buffer lane the box has to
be sent to. The controller checks its reservations and responds. Thereafter the box travels to
the appropriate buffer lane with zero delay simulating the non-existence of the post-sorter.

2.9 Buffer Lane

The buffer lane process consists of two parts, one part is used to store boxes in the buffer and
the other part is used to empty the buffer. The boxes arrive in a buffer lane via the post-sorter
it is connected to. This post-sorter also indicates when a buffer lane can be emptied such that
the boxes can be sent to the palletizing machine in order to create a pallet. Arrival is modeled
through addition to a queue, while departure is modeled as emptying the complete queue at
once.

2.10 Palletizer

The palletizer creates pallets from boxes in buffer lanes.

As soon as a palletizer receives a message from its post-sorter that a pallet can be created,
it stores this information. Buffer lanes are emptied and pallets are created using this infor-
mation whenever the palletizer is available. The database is queried to find out how long
palletizing of the boxes will take. To simulate the palletizing process a delay is incurred.
Complete pallets are sent to the wrapper.

2.11 Wrapper

The wrapper accepts pallets, wraps them, and sends them to the exit process. Wrapping a
pallet takes forty seconds.

Ultimately, this process is not modeled at all as it is just another additional delay at the end
of the model, not changing any relevant properties of the model as such.

2.12 Pallet Exit

The pallet exit process is, like the manual exit process, an ordinary exit process. It accepts
wrapped pallets.

3 Reflections on the Modeling Process

This section summarizes the modeling process we went through. First another representa-
tion is described in which the behavior of our model is captured. Second we describe where
our simulation model deviates from the requirements. Thereafter the evolution of the model
throughout the modeling process is explained. Last we describe our experiences with the χ
tool set.

23 Reflections on the Modeling Process

Figure 4.5: A representation of the processes with a sketch of their dynamical behavior. Cir-
cular/repetitive time lines represent independent processes, while thick line segments repre-
sent a time delay. Dotted arrows indicate control flows, while solid arrows depict transported
goods. Grey boxes are involved in goods flows, while white boxes concern control. Shaded
boxes are involved in both types of flows.

3.1 Model Dynamics

As an alternative to the prosaic description of Section 4.2 a representation that visualizes
the temporal behavior of the processes and their interactions is given in Figure 4.5. This
representation has been introduced because it is very hard to understand and to reason about
system behavior. It should help finding modeling errors early in the modeling process.

The prosaic description of the sub-processes can be mapped onto the blocks in Figure 4.5,
although some simplification had to be performed in order not to clutter the diagram too
much. Independent processes, represented by circles, inside the sub-processes communi-
cate via shared data, while between sub-processes communication is done via synchronous
communication channels.

3.2 Deviations from Intended Behavior

Our χ model does not strictly adhere to all the requirements stated in Section 3.2. In this
section the deviations from the requirements are pointed out and motivated.

In Section 3.2.5 it is stated that consideration should be taken to balance the allocation of
SKU’s requiring a lot of buffers with SKU’s requiring little buffers to palletizers. Most SKU’s
require only one buffer lane for buffering a full pallet load, simply because the buffer lanes
are long enough. Therefore it hardly ever occurs that a virtual pallet cannot be allocated to a
palletizer due to inefficient allocation planning. The control overhead induced by a more so-
phisticated planning algorithm does not outweigh its benefits in these rare occasions. There-
fore we have decided not to implement this load balancing.

Also, it is stated in Section 3.2.5 that pallet pattern changeover should be minimized. In
our model virtual pallet loads are assigned to buffer lanes based only on the amount of free

24 The Receiving Area

buffer lanes available. It is true that a performance gain could be achieved by implementing
this rule, although this effect is expected to be quite small.

Another requirement we do not implement concerns the extendable conveyors. In Sec-
tion 3.2.1 it is stated that extendable conveyors have a preference for moving to the left.
In our model, the extendable conveyors choose a movement direction (left or right) non-
deterministically. As a result the utilization of the unloading positions is less skewed to one
side.

3.3 Model Evolution

The χ model as listed in Appendix B has evolved throughout the modeling process. In this
section we will explain the most important evolutions.

Multiple attempts have been made to model the behavior of the pool of extendable conveyors.
The very first attempt was just a pool from which any unloading position can request an
extendable conveyor when it needs one. In this solution any extendable conveyor can serve
any unloading dock, so they can also cross each other. This is not an acceptable solution
as it does not adhere to the requirements, because extendable conveyors are not allowed to
cross each other. The next few attempts all use a controller to direct the conveyors to their
positions. This solution does adhere to the requirements, but it should be able to model
this in a simpler way. This idea is mainly inspired by the natural language description of the
behavior of the extendable conveyors, which is just a few sentences. Such a natural language
description is most easily given from the perspective of one extendable conveyor, therefore we
decided to try to model the behavior also from the perspective of one of the conveyors. This
attempt results in the final, decentralized, model of the extendable conveyors.

The first versions of the model use some hard-coded input data to test the behavior of our
model. One of the requirements is to use data from a database to perform the simulation
experiments. Therefore we add an interface to an external database. The database can be
queried in an object-oriented like fashion [BME+07].
The shift from hard-coded input to a database introduced another problem. The hard-coded
input is tailored such that a container always contained at most one pallet load of SKU’s. In
the database this is not always the case. Therefore we decide to create virtual pallets upfront
instead of adapting the complete scheduling algorithm in our model. This virtual pallet
approach has as main advantage that reservations at the palletizers are made upfront, both
for full pallet loads or for incomplete pallets whenever necessary.

As there is no generic front-end available for χ to organize and visualize simulation output,
we have found our own solution for this. First we inserted print statements at interesting
points in the code. This is a workable solution, although it has as major drawback that it
clutters the code. Subsequently we create a logbook to which all processes can write output.
This has as major advantage that all output is collected in one process such that the code is
less cluttered. A disadvantage of it is that all processes need an interface to the logbook. This
way of dealing with logging resembles an aspect-oriented approach [KLM+97].

The last adaptation of ourmodel comprises the introduction of parameters that can be changed
just before compile time. This has as advantage that it is relatively easy to start a batch of ex-
periments using a preprocessor instead of repeatedly adapting the model. Also, automatically
adapting these parameters is less error prone as dependent parameters are adapted simulta-
neously and yields faster execution models.

25 Reflections on the Modeling Process

3.4 Model Refinement

The time it takes to run the model for a fair amount of simulation time is quite long, or
to be more precise, in many (experimental) conditions the simulation runs for a number of
days. Partly, the refinement process in the model causes this, because after most discussions
more detailed behavior (as opposed to less) is added to the processes, which takes more time
to simulate. Only a few times a better modeling approach was seen, that actually improved
model simulation performance. On the other hand, refinement is necessary in order to build
understanding of the processes, their models, their intended and actual behaviors.

Application of the model as such in a larger context is hard to imagine for two reasons. First,
the larger model would be unusably slow and secondly, the model would be unusably com-
plex.

This calls for adequate abstraction of such models, which could be achieved through aggre-
gate modeling [LA07].

3.5 Pros and Cons of the χ Tool Set

In this subsection a few sentences are devoted to our experiences with the χ tool set. This
section is therefore rather subjective.

The χ language is fairly easy to learn, however the underlying formalism is a lot more difficult
to apprehend. Reasoning about parallel processes is not trivial. It is however a very strong
formalism, which is expressed by the fact that operational concepts can be written in χ very
concisely. This results in a high speed of modeling.

It is very easy to vary the structure of the model. In our case adding or removing a buffer lane
is just a matter of changing a few numbers. This is made possible by the powerful concept
of channel bundles. Unfortunately constant values are not yet supported by χ. Because of
this, adding or removing a buffer lane requires the change of a few values, rather than one
constant. We solved this by creating a preprocessor which changes constants throughout the
code of the simulation model by the appropriate values, see Appendix C.

Another powerful and indispensable concept, is the concept of simulation time. This enables
the simulation of days of real time in just a few seconds. Unfortunately our model turned out
to be of such complexity that simulation takes more time than is actually simulated. The
use of simulation time ensures that the platform on which the model runs and hence, the
execution time of the simulation program, do not influence the time-dependent results of
the conducted experiments.

A drawback of the χ formalism is the absence of facilities for model verification and vali-
dation. Once a model has passed the compilation process, no feedback is given anymore.
Therefore it is very difficult to establish whether the intended behavior is modeled correctly.
Also, the discovery of deadlocks and livelocks can be difficult. Once a deadlock is encoun-
tered this is reported to the user. However, the absence of deadlocks cannot be guaranteed.
It is possible that a deadlock only occurs in rare occasions which may not occur during every
simulation. Livelocks are not reported at all, the user has to conclude for himself that (and
why) a livelock has occurred. It should however be noted that translations from χ to SPIN,
UPPAAL and mCRL2 exist. These formalisms can be used for verification and validation
purposes.

The output of the simulation of a χ model is returned in plain text format. Therefore other

26 The Receiving Area

tools are needed to generate graphical output. This requires to think about specifying the out-
put such that it can be used as input for those other tools. Also, inserting output statements
clutters the code of a simulation model. It is however possible to generate some graphical
output in the form of Gantt charts and automata from a χ simulation model.

27 Reflections on the Modeling Process

28 The Receiving Area

Chapter 5

Experiments
The receiving area has been described and a χ model of it has been built, the primary goal
of the latter is to analyze the performance properties of the receiving area as a function of
its structural and behavioral design. The well-known parameters to characterize performance
properties have been introduced in Chapter 2 and will be treated in the subsections of this
chapter. First, however, the rationale for the series of experiments that has been carried out
is described.

1 Series of Experiments

The experimental set-up is primarily chosen such that the influence of structural parameters
on the performance figures can be measured. The relevant structural parameters are:

• The number of extendable conveyors c,

• The number of buffer lanes at each palletizers b, and

• The number of palletizers p.

The first of these, the number of extendable conveyors, is the most determining factor for
representing the input capacity of the total area. This is related to the fact that this number is
directly coupled to the number of human operators that unload the boxes from the contain-
ers. The second parameter, the number of buffer lanes, is most relevant in characterizing the
level of decoupling between front-end and back-end of the system (front-end and back-end are
the parts before and after the sorter, respectively). After all, this number of lanes determines
how much work can be done upfront without considering the palletizers, and how much
work can be stored for the palletizers without knowing what is happening at the unloading
positions. The last parameter, the number of palletizers, is the most determining factor for
representing the output capacity of the total area.

29 Series of Experiments

A large number of parameters is not varied, but are chosen to represent the reality as closely
as possible. These include the number of static unloading positions, the time it takes a
human operator to unload boxes, the time it takes to palletize different types of boxes, the
time it takes to change containers, the time it takes to move extendable conveyors, the time
an operator needs for announcing an SKU changeover, the traveling time of boxes through
the system, and the length of each buffer lane. The central sorter deserves some specific
attention. It is designed to have an overcapacity, although not being infinite. That is, its
behavior is taken constant, but neither trivial nor detailed, which was necessary to render the
simulation model both realistic and workable.

We vary the three structural parameters mentioned above to fill a three-dimensional space
with points at regular intervals around the working point that is available from the original
design of an existing receiving area of a warehouse. Representing this working point with
(c, b, p) = (8, 7, 4), where c represents the number of extendable conveyors, b the number
of buffer lanes, and p the number of palletizers, the experiments cover the set {(c, b, p)|c ∈
{6, 8, 10}, b ∈ {3, 5, 7,9}, p ∈ {3, 4, 5}}. The variation in the number of buffer lanes b is taken
to lower values, because in earlier experiments we have seen that the original design has some
overcapacity in that parameter as well.

The stochastic input data to the model, i.e., the choice of containers and their contents, is
chosen to be an identical array for each of the experiments that has been done. The series of
containers is 76 long, which are selected to avoid containers with purely manually palletizable
boxes and to achieve an average pallet factor (number of boxes per pallet) of about 23.

2 Experimental Results

In each run of of the simulation model 25 hours of operation are simulated. This is taken
identical to the experiments described in [DGHV01]. As the model uses deterministic input,
two of the same runs will result in the same outcome, therefore none of the experiments are
replicated. In order to remove the influence of any start-up noise, only the last 24,5 hours of
the simulated time are used to calculate the performance statistics.

2.1 Throughput

Throughput δ is one of the most important characteristics for the receiving area of a ware-
house. Therefore, it is the first dependent variable that is considered in the analysis of the
experimental data.

Average Throughput

In Table 5.1 an overview of the throughput data is given. The numbers are given in pairs,
which denote the throughput for the palletizer outputs alone, and for the combined output of
palletizers and ‘manual’ exits, respectively. First of all, it can be seen that the total throughput
is linear with the number of extendable conveyors (δ ≈ 1200 · c), although this decreases a
little for larger values of c. This decrease from linearity can be explained by the fact that in
the case of more extendable conveyors, fewer position changes can be made, and therefore,
conveyors have to wait at a position rather than move to a neighboring position. The former
option costs more time and decreases the receiving area’s throughput.

The palletizer output numbers are also visualized in Figure 5.1. The general increase of

30 Experiments

c b p = 3 p = 4 p = 5
10 9 2754/5899 3698/5902 4429/5906

7 2722/5906 3618/5911 4330/5909
5 2581/5912 3365/5912 3989/5917
3 2122/5917 2626/5919 3040/5915

8 9 2789/4788 3578/4792 3871/4803
7 2735/4792 3497/4794 3846/4803
5 2536/4797 3188/4796 3637/4801
3 1985/4797 2449/4801 2820/4803

6 9 2598/3597 2810/3602 2818/3603
7 2524/3596 2798/3601 2818/3603
5 2309/3603 2662/3602 2786/3603
3 1764/3605 2086/3605 2351/3606

Table 5.1: Average throughput (measured in boxes/hours) over nearly 25 hours of simulation
time. The pairs of numbers indicate throughput δ for the palletizer output only and palletizer
output combined with the ‘manual’ exit. The standard errors of these means are all less than
50.

1500

2000

2500

3000

3500

4000

4500

3 4 5 6 7 8 9

−→
δ
(b
ox
es
/h
ou

r)

−→ b

Throughput

c = 10

c = 8

c = 6

Figure 5.1: Average throughput (measured in boxes/hours) over nearly 25 hours of simulation
time. The horizontal axis denotes the number of buffer lanes. Different plotting symbols are
used for different numbers of extendable conveyors, while different numbers of palletizers
result in several lines with identical plotting symbols.

31 Experimental Results

0

5

10

15

20

25

30

35

2000 3000 4000 5000 6000

−→
re
la
ti
ve

oc
cu

rr
en

ce

−→ δ (boxes/hour)

Variation in throughput

p = 3

p = 4

p = 5

Figure 5.2: Variation in throughput, visualized through a histogram in which the relative
occurrence of a range of throughput values is the dependent variable. The throughput values
are measured each 5 minutes, while the binsize (throughput quantization unit) is taken 70.
This graph only represents the case where the number of extendable conveyors is 10 and the
number of buffer lanes is 9.

throughput with higher values of c, b, and p is clear, although saturation effects are very clear
as well. Saturation means that the curves approach a flat asymptote, a limiting value, instead
of increasing indefinitely. Variation in the number of palletizers is visualized with identical
plotting symbols in order not to further clutter the graph— the resulting lines lie higher with
higher values of p.

The balance between front-end and back-end capacities is visible from this graph. For c = 6
all three curves more or less coincide, while for c = 8 the two curves for p = 4 and p = 5
coincide, and for c = 10 all three curves are clearly separated. From this can be inferred that
for c = 2 · p the system is well balanced. This relation is weaker for smaller values of b,
indicating that a stronger coupling between input and output disturbs the simple rule that
was found. This conjectured rule-of-thumb c = 2 · p (in order to get a balanced system) has
been assumed as a first order approximation in the original design of the receiving area as
well.

The influence of the number of buffer lanes is such that the original design is quite optimally
chosen again. Leveling of the throughput is visible at b = 7 for most curves.

Variation in Throughput

An important question that relates to throughput is how the throughput capacity is varying
over time. This has been considered in one simple case, where the number of palletizers
is varied and the other structural parameters have been kept constant (c = 10, b = 9). This
results in the histogram pictured in Figure 5.2.

The center-of-gravity (i.e., the weighted average) of these curves on the x-axis is equal to their
averages as mentioned in Table 5.1. The curves are quite symmetrical around this point, but

32 Experiments

1

10

100

1000

10000

60 70 80 90 100 110 120

re
la
ti
ve

oc
cu

rr
en

ce
(l
og
ar
it
h
m
ic
sc
al
e!
)

−→ ϕ (s)

Travel time on sorter

b = 9
b = 7
b = 5
b = 3

Figure 5.3: Flow time graph for the sorter subprocess. Note that the vertical axis denotes rela-
tive occurrence on a logarithmic scale. The numbers of extendable conveyors and palletizers
are both taken maximal, i.e., c = 9 and p = 5.

the higher the average throughput is, the higher the spread of the curve. This means that the
system load exhibits more variation for higher throughput. The size of this effect is not very
large.

2.2 Flow Time

Flow time (ϕ) of boxes in the system is one of the few variables that has the property that they
add linearly over sub-processes, provided all processes are taken into account. Therefore, it
is an important variable to study in order to characterize processes, especially when they are
going to be considered in the context of a larger system.

Flow time exhibits quite straightforward properties in our model, at least for the first parts of
the model. In the front-end part, boxes either travel 4.3 or 8.6 seconds, depending on their
size. A flow time graph would add nothing to this observation, except for rating how many
large boxes versus small boxes there are.

The central sorter is modeled in such a way that travel time through the system is incorpo-
rated and a maximum capacity is obeyed. The travel time is set to 60 seconds, while the
capacity is bounded to 6000 boxes per hour, i.e., one per 0.6 seconds. In Figure 5.3 the flow
time is displayed for boxes passing the sorter. The largest strain and therefore, also the largest
variations on flow times on the sorter occur when the sorter becomes the limiting factor of
the complete system. Hence, in order to study these largest effects, the front-end and back-
end capacities are taken maximal, i.e., c = 9 and p = 5, because in other situations the sorter
has a clear overcapacity. To see this, compare its capacity of 6000 boxes per hour with the
left-hand side figures in Table 5.1. But even in this case, the flow time graph deviates only
little from the 60 seconds delay that is imposed on every box.

To indicate that the effect of the first two parts of the model (front-end and sorter) on the flow
time is quite trivial, the total flow time is compared to the flow time in the back-end part of

33 Experimental Results

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500 600 700 800 900

re
la
ti
ve

oc
cu

rr
en

ce

−→ ϕ (s)

Travel time relation

total system
back-end part

Figure 5.4: Example of flow time graphs for the total process and the palletizing subprocess.
The first experiment is taken, i.e., the numbers of extendable conveyors and palletizers are
c = 9 and p = 3.

the model. This is mainly a shift, as can be seen in Figure 5.4.

It is interesting to see how the total flow time changes with different parameter settings.
This is shown in Figure 5.5, where all parameter settings are displayed in a matrix, with
the number of palletizers varying over rows, the number of extendable conveyors varying over
columns, and the number of buffer lanes varying within each plot, shown as different curves.

A number of observations can be made from these graphs in order to build up a better un-
derstanding of the studied system. First of all, the curves shift to the right if the number
of buffer lanes increases. That is, the average flow time is larger when more buffer space is
available inside the system. This only holds, however, if the input capacity exceeds the output
capacity as can be seen in Figure 5.5. If it is the other way around, the complete system is
just working at nominal throughput of the back-end, independent of the number of buffer
lanes. This situation occurs for 5 palletizers with either 8 or 6 extendable conveyors, and for
4 palletizers with 6 extendable conveyors. Again, indirectly it might be incurred that c = 2 · p
belongs to an approximately balanced system.

The shape of the curves is not constant. When the palletizers have little buffer capacity,
they will cause nominal behavior for a queueing system that delivers output in a batched
manner. The curves resemble a (ϕ − ϕ0)−1 relation, with some limiting effect around ϕ0.
The heuristic variable ϕ0 denotes the lower bound of the flow time curves. When they have
large buffer capacity, the flow times get larger and spread over a larger range of values. Note,
that for some combinations, the curves flatten off much stronger. This can be seen for the
experiments where 9 lanes have been combined with c = 2 · p, the balanced situations. The
front-end and back-end both vary around a mutual equilibrium, and as such, sometimes the
palletizers catch up with stored work, while at other times they need much longer times.

34 Experiments

00 200 400 600 800
−→ ϕ (s)

c = 10, p = 5
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 10, p = 4
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 10, p = 3
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800
−→ ϕ (s)

c = 8, p = 5
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 8, p = 4
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 8, p = 3
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800
−→ ϕ (s)

c = 6, p = 5
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 6, p = 4
b = 9
b = 7
b = 5
b = 3

00 200 400 600 800

c = 6, p = 3
b = 9
b = 7
b = 5
b = 3

Figure 5.5: Total flow times of automatically palletized boxes as a function of all parameter
settings in the experiments that have been run. Over the rows p varies, over the columns c
varies, while different values for b are shown in each subgraph. The surface under the curves
is equal to the left-hand side figures in Table 5.1.

35 Experimental Results

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

u
ti
liz

at
io
n

−→ palletizer number

c = 10

b = 9
b = 7
b = 5
b = 3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

−→ palletizer number

c = 8

b = 9
b = 7
b = 5
b = 3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

−→ palletizer number

c = 6

b = 9
b = 7
b = 5
b = 3

Figure 5.6: Utilization of the palletizers for all different experimental settings. The 3 sub-
graphs indicate different values of c. For each palletizer (indicated on the x-axis) the utiliza-
tion can be read on the vertical axis.

2.3 Work-in-Process

In a stationary situation, work-in-process (wip) is related to flow time and throughput by
means of Little’s law [Lit61]: w = ϕ · δ. On a infinitesimal scale, this can be interpreted as
mass conservation, i.e., what goes in, must come out1. It can be measured in an independent
way in our experiments, and graphs which show w over time give some further insight in the
dynamic behavior of the total system. This is however so little, that the graph is left out in
this report.

It appears that our model has abstracted from considering w. Timing is incorporated in the
model, but distances and velocities are not. To study w in more detail, we feel that a more
detailed model has to be made that includes a lot more actual design decisions about the
physical components that will be applied.

2.4 Utilization

Palletizers

Utilization of the palletizers is an important variable to study, as it indicates how much the
system is effectively used. In Figure 5.6 the curves of average utilization for each of the
palletizers is plotted.

From the figures it can be concluded that the first palletizers always get the highest load. This

1An infinitesimal part of a system can be seen as a volume ∂V = ∂A ·∂`, which is the product of an area (through
which work flows) and a length. Definitions lead to expressions for throughput δ = ρ · v · ∂A, flow time ∂ϕ = ∂`/v,
and work-in-process ∂w = ρ · ∂V , in which ρ denotes work density and v the velocity with which the work flows. They
can be seen to relate through ∂w = δ · ∂ϕ, which is isomorphic with Little’s law.

36 Experiments

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

u
ti
liz

at
io
n

extendable conveyor number

Utilization of unload positions
c = 10
c = 8
c = 6

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

u
ti
liz

at
io
n

extendable conveyor number

Utilization of extendable conveyors
c = 10
c = 8
c = 6

Figure 5.7: Utilization of the unloading positions and extendable conveyors. Only the number
of extendable conveyors is varied. Note the difference in scale of the y-axes.

is caused by the fact that for equal numbers of free buffer lanes the palletizer with the lowest
index is selected first. Hence, this is a modeling artefact, as the selection procedure could
have been chosen differently as well.

For lower numbers of buffer lanes the load decreases. This can be understood when one
realizes that in the case of fewer buffer lanes, less work in advance can be scheduled to a
palletizers and hence, the chance that such a palletizer runs out of work is higher.

Lastly, if more palletizers are involved in the system, the load per palletizer is lower. This
seems trivial: the work spreads over more palletizers and hence, each palletizer has less work
to do. However, the sum of work that is done also increases, as the sum of the utilizations
grows. Only for the right-hand graphs (c = 6), and larger number of buffer lanes, also the
sum of utilizations is fairly constant, which means that all the work that can be dispatched to
the palletizers is actually handled (i.e., there is overcapacity in the back-end).

Unloading Positions & Extendable Conveyors

In Figure 5.7 the utilization in the front-end of the system is displayed. Only the number of
extendable conveyors is varied, because the graphs are independent of the other structural
parameters of the model. This can be explained by the fact that the manual exit causes the
back-end to have infinite capacity from the viewpoint of the front-end part (see Section 4.2.6).

The unloading positions are used less if there are fewer extendable conveyors. All in all, their
utilization is quite low, as the number of extendable conveyors does not match the number
of unloading positions. Further, it might be observed that the balance of utilization over the
different unloading positions is far from optimal. This could be avoided by other scheduling
schemes for the extendable conveyors.

The utilization of the extendable conveyors is very high. The variation in utilization merely in-
dicates the variation in the unload times of the containers, and the scheduling of the extend-
able conveyors which can result in 500 seconds waiting for a new container or 120 seconds
moving from one position to another.

37 Experimental Results

38 Experiments

Chapter 6

Conclusions and Future Work

1 Conclusions

This report has focussed on a simulation-based performance analysis of a container unload-
ing and palletizing process. This system is already operational, therefore our initial layout
closely resembles the real-world layout. We varied the number of extendable conveyors, the
number of buffer lanes, and the number of palletizers to come to an optimal solution. From
the simulation results it can be concluded that the number of extendable conveyors is most
determinant for the input capacity and the number of palletizers is the most determinant
factor for the output capacity of the palletizing area. When the input capacity exceeds the
output capacity, an increase in the number of buffer lanes increases the average flow time of
boxes in the system. For a smaller number of buffer lanes, the average throughput decreases.
This is because less work can be scheduled in advance. When the output capacity exceeds the
input capacity, the system works at nominal capacity of the palletizers and is therefore nearly
independent of the number of buffer lanes. Based on the required average unloading and
automatic palletizing capacity of 3400 boxes/hour, the best fitting solution has the following
structure parameters: 8 extendable conveyors, 4 palletizers, and 7 buffer lanes per palletizer.
This conclusion is consistent with the findings described in an earlier study [DGHV01].

We proposed a divide–and–conquer approach to do a performance analysis of a warehouse.
The running time for the simulation of the χ model of one, rather small subsystem of a
warehousing system takes more time than is actually simulated. Therefore we can assume
that doing a performance analysis of an entire warehousing system by integrating the simu-
lation models of the subsystems into one large simulation model is not a workable solution.
The running time of such a simulation will probably be way too long. Not only this time
complexity is a problem, it is also very hard to comprehend the behavior of such a complex,
integrated system. We already needed another representation to capture the dynamics of the
palletizer model to help us understand the behavior of this small system (see Figure 4.5 on
Page 24). Therefore, other techniques are required to do a performance analysis of larger sys-
tems. Aggregate modeling [LA07] appears to be a good candidate for this, because aggregate
models are very small, while the characteristics of all subsystems are maintained in the larger
simulation model.

39 Conclusions

The use of the χ formalism proves practical for use in a logistical environment. The fact that it
uses parallel processes allows to think locally about behavior, i.e., from the perspective of one
process. Still, the effects of interoperation of parallel processes is difficult to comprehend.
The principle simulation time is indispensable when analyzing systems of this kind. It allows
to completely ignore calculation overhead and thus really focusses on the physical system
performance.

2 Directions for Further Research

The unloading and palletizing system is only the first of a number of warehouse processes
that have to be analyzed. There are a lot more subsystems that need to be modeled in order
to come to a performance analysis of an entire warehousing system. As we have shown it
is infeasible to do this in a straightforward way by putting simulation models together. To
allow modeled systems to be integrated into a larger simulation model, aggregate models are
needed. The palletizing system could be aggregated as two processes with a buffer in be-
tween: one process representing the unloading processes (the input), the other representing
the palletizing processes (the output). The exact configuration and the precise characteristics
of the aggregate model is left open for further research.

As can be concluded from the graphs in Figure 5.6, the load balancing between extendable
conveyors is not optimal. More advanced scheduling schemes for the positions of the ex-
tendable conveyors may decrease these utilization differences. This may also lead to a higher
overall system performance as the input capacity increases.

The presented approach starts from an existing design and predetermined process policies
that eventually determine the system’s behavior. Ultimately, one would like to work the other
way around: given required system behavior, the process policies can be determined.

Apart from coming to a more complete and optimal model it is also interesting to research
other uses for the χ model and for χ models in general. One possibility is to automatically
generate diagrams like the one depicted in Figure 4.5. Another interesting research direction
is to generate (parts of the) controller code for the different physical parts directly from the χ
model.

40 Conclusions and Future Work

Bibliography

[AWK03] GAWK: Effective AWK Programming: A User’s Guide for GNU Awk, third edition,
2003.

[BME+07] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen, and K. A.
Houston. Object-Oriented Analysis and Design with Applications. Object Technol-
ogy Series. Addison Wesley Professional, Longman, third edition, 2007.

[DGHV01] R. Debets, D. Gristy, E. Hessel, and M. Veenman. Automatic palletising solution
analysis. Multi-discipline report 94293–086–11201–EN–B, Vanderlande Indus-
tries, Veghel, 2001.

[FAL06] FALCON website. http://www.esi.nl/falcon/, 2006.

[Fri06] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, third edition,
August 2006.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Mehmet Aksit and Satoshi Mat-
suoka, editors, Proceedings of the 11th European Conference on Object-Oriented Pro-
gramming (ECOOP’97), volume 1241 of Lecture Notes in Computer Science, pages
220–242, Jyväskylä, Finland, June 1997. Springer-Verlag, Berlin.

[LA07] E. Lefeber and H. D. Armbruster. Aggregate modeling of manufacturing sys-
tems. SE Report 2007-02, Eindhoven University of Technology, Eindhoven,
2007.

[Lit61] J. D. C. Little. A proof of the queueing formula l = λw. Operations Research,
9:383–387, May–June 1961.

[LR06] E. Lefeber and J. E. Rooda. Modeling and analysis of manufacturing systems.
SE Report 2006-01, Eindhoven University of Technology, Eindhoven, 2006.

[vBMR+06] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers.
Syntax and consistent equation semantics of hybrid chi. Journal of Logic and
Algebraic Programming, 68(1–2):129–210, June–July 2006.

[VR06] J. Vervoort and J. E. Rooda. Learning Timed χ 1.0. Technische Universiteit Eind-
hoven, Department of Mechanical Engineering, Systems Engineering Group,
Eindhoven, November 2006.

41

42 Bibliography

Appendix A

Detailed Requirements
This appendix lists the requirements extracted from Section 3.2 as well as some additional
requirements that were necessary to fully model the system.

The requirements are grouped in two categories:

• High-level requirements

• Detailed requirements

All requirements have a unique identifier.

1 High-Level Requirements

Identifier Requirement
HLR-1 Boxes must be unloaded.
HLR-2 Boxes must be pre-sorted to manual or automated palletizing.
HLR-3 Automatically palletizable boxes must be merged on take-away conveyors.
HLR-4 Automatically palletizable boxes must be sorted in buffer lanes.
HLR-5 Automatically palletizable boxes must automatically be palletized.
HLR-6 Full pallets must be wrapped.

Table A.1: High-level requirements

43 High-Level Requirements

2 Detailed Requirements

2.1 Container Marshalling

Identifier Requirement
DR-1 Twelve unloading positions are available.
DR-2 Twelve take-away conveyors are available.
DR-3 Eight moveable extendable conveyors connect the unloading positions with the

take-away conveyors.
DR-4 At start-up the extendable conveyors are placed at doors 2, 3, 5, 6, 8, 9, 11, and

12.
DR-5 When a container is empty, the extendable conveyor used for unloading it will

move to the nearest unloading position that has a full container available as
soon as it is available.

DR-6 If multiple full containers are available at the same time at the same distance,
the extendable conveyor will go to the unloading position left from its current
position.

DR-7 An extendable conveyor only moves to another unloading position if a full con-
tainer is available.

DR-8 An extendable conveyor needs to be empty before it can be moved.
DR-9 Extendable conveyors cannot cross each other.
DR-10 Changing an extendable conveyor between doors takes 120 seconds.
DR-11 Replacing a container at a door takes 500 seconds.

Table A.2: Detailed requirements — Container Marshalling

2.2 Container Unloading

Identifier Requirement
DR-12 Before an operator can start unloading, the WMS/WCS needs to be informed

what SKU is being unloaded.
DR-13 Informing the WMS/WCS of an SKU changeover takes 120 seconds.
DR-14 An operator will start unloading when a container and an extendable conveyor

are in place.
DR-15 If a container contains more than one SKU, the operator will first unload all

items of SKU 1, then all items of SKU 2, etc.
DR-16 The operator will unload boxes at a constant rate.

Table A.3: Detailed requirements — Container Unloading

44 Bibliography

2.3 Pre-sorting

Identifier Requirement
DR-17 At the end of the extendable conveyors boxes are pre-sorted to automatic or

manual palletizing.
DR-18 A box will be manually palletized if any of the following situations occur:

• it is technically impossible to automatically palletize a boxes of that SKU
type,

• it is impossible to make a buffer reservation at any of the palletizers be-
cause none of them has enough buffer lanes available to buffer a com-
plete pallet load of those boxes.

Table A.4: Detailed requirements — Pre-sorting

2.4 Layer Palletizing

Identifier Requirement
DR-19 There are three layer palletizing machines.
DR-20 Every layer palletizing machine has seven buffer lanes feeding boxes to it.
DR-21 The length of such a buffer lane is 13.185 meters.
DR-22 The capacities of the layer palletizing equipment are listed in Table 3.2 on page

15.
DR-23 A layer palletizing machine can palletize one pallet at a time.
DR-24 A buffer cannot be partially flushed.
DR-25 The layer palletizing machine requires a full pallet load to be buffered prior to

processing it.
DR-26 On SKU changeover the palletizer shall complete the buffered boxes of the pre-

vious SKU’s as a partial pallet.
DR-27 Overflow must be avoided.
DR-28 Pallet pattern changeover should be minimized.
DR-29 An SKU will be allocated to the palletizer based on the required number of

buffers (If x lanes are needed, then x buffer lanes need to be available).
DR-30 If multiple palletizers have enough buffer lanes available, the one with the most

free lanes is chosen.
DR-31 If a palletizer with sufficient buffer lanes is available the system shall reserve

buffer lanes the new SKU.
DR-32 A database with SKU data is required.

Table A.5: Detailed requirements — Layer Palletizing

45 Detailed Requirements

46 Bibliography

Appendix B

χ Model
This appendix contains the χ 1.0 code of our simulation model. Notice the DEFINE decla-
rations in the beginning of the listing. This is not standard χ code, but directives for our
preprocessor (see Appendix C).

from standardlib import *

DEFINE %NCONT 76
DEFINE %NCUL 12
DEFINE %NXC 8
DEFINE %NBUF 7
DEFINE %NPAL 4
DEFINE %MINLENGTH_LARGE 600
DEFINE %UNLOADTIME_LARGE 8.6
DEFINE %UNLOADTIME_SMALL 4.3
DEFINE %OPERATORCHANGETIME_SKU 120.0
DEFINE %XCCHANGETIME 120.0
DEFINE %CONTAINERCHANGETIME 500.0
DEFINE %BOXTRAVELTIME 60.0
DEFINE %SORTERHOURCAPACITY 6000.0
DEFINE %LANELENGTH 13185
DEFINE %PALLETIZERCHANGETIME_SKU 10.0
DEFINE %PALLETCHANGETIME 15.0

type box = (nat, nat, nat, real, real) //(id, SKU, pid,
// timestamp(abs), timestamp(rel))

, boxdata = box
, container = (nat, nat, nat) //(id, sku, # of SKU)
, pallet = (nat, [box]) //(id, list of boxes)
, xc_index = nat // extendable conveyor index
, ul_index = nat // unloader index
, ecs_data = (bool, ul_index) // extendable conveyor store
, spid = (nat, nat) //(sku id, pallet id)
, skudata = (nat, nat, nat, bool, nat, real) //(id, palletfactor, skulength,

// autopalletize?,
// layers per pallet,
// time per layer)

, logentry = (string, string, nat, real) //(process, variable, logtype, value)

47

func digit (val n: nat) -> string = |[ret <"0", "1", "2", "3", "4", "5", "6", "7", "8", "9">.n]|

func nat2str (val n: nat) -> string =
|[var s: string = ""
:: (n = 0 -> s := "0" | n > 0 -> skip)
; (n > 0) *> (s:= digit (n mod 10) ++ s; n:= n div 10)
; ret s
]|

func name4me(val s: string, n: nat) -> string = |[ret s ++ nat2str(n)]|

func getContents(val cid: nat, cdb: [container]) -> [container] =
|[var x: [container] = [], c: container
:: (len(cdb) > 0)

*>(c := hd(cdb); cdb := tl(cdb)
; (c.0 = cid -> x := x ++ [c]

| c.0 /= cid -> skip
)

)
; ret x
]|

func getSkuData(val sku: nat, sdb: [skudata]) -> skudata =
|[var s: skudata
:: (len(sdb) > 0)

*>(s := hd(sdb); sdb := tl(sdb)
; (s.0 = sku -> ret s

| s.0 /= sku -> skip
)

)
]|

func getPalletFactor(val sku: nat, sdb: [skudata]) -> nat =
|[ret getSkuData(sku, sdb).1]|

func getSkuLength(val sku: nat, sdb: [skudata]) -> nat =
|[ret getSkuData(sku, sdb).2]|

func getAutoPalletize(val sku: nat, sdb: [skudata]) -> bool =
|[ret getSkuData(sku, sdb).3]|

func getPalletTime(val sku: nat, sdb: [skudata], nr: nat) -> real =
|[var s: skudata = getSkuData(sku, sdb), a: nat
:: a := nr mod s.4;

(a > 0 -> ret s.5 * (nr div s.4 + 1)
| a = 0 -> ret s.5 * (nr div s.4)
)

]|

proc DB(val cdb: [container], sdb: [skudata],
chan gc?: nat, c!: [container], gpf?, pf!: 2 # nat, gsl?, sl!: 3 # nat

, gap?: nat, ap!: bool, gpt?: (nat, nat), pt!: real) =
|[var cid, sku, nr: nat
:: *(gc?cid; c!getContents(cid, cdb)

| (|, i<-0..1, gpf.i?sku; pf.i!getPalletFactor(sku, sdb))
| (|, j<-0..2, gsl.j?sku; sl.j!getSkuLength(sku, sdb))
| gap?sku; ap!getAutoPalletize(sku, sdb)
| gpt?(sku, nr); pt!getPalletTime(sku, sdb, nr)
)

]|

proc CidG(chan a!: nat) =
|[var cid_max: nat = %NCONT, cid_min: nat = 1, cid: nat
:: cid := cid_min ; *(a!cid; cid := cid + 1;

(cid > cid_max -> cid := cid_min

48 χ Model

| cid <= cid_max -> skip
)

)
]|

proc PidG(chan a!: nat) = |[var pid: nat = 0 :: *(a!pid; pid := pid + 1)]|

proc BidG(chan a!: nat) = |[var bid: nat = 1 :: *(a!bid; bid := bid + 1)]|

proc SConG(chan a!: [[box]], c?, p?: nat, gc!: nat, rc?: [container]
, gpf!, rpf?: nat) =

|[var cid: nat, ccs: [container], cc: container, pf: nat, bl, blp: [box]
, bid, pid: nat, xss: [[box]]

:: *(xss := []
; c?cid; gc!cid; rc?ccs
; (len(ccs) > 0)

*>(cc := hd(ccs); ccs := tl(ccs)
; gpf!(cc.1); rpf?pf
; blp := []; pf > len(blp)+1 *> (blp := blp ++ [(0, cc.1, 0, 0.0, 0.0)])
; (cc.2 >= pf)

*>(p?pid
; bl := [(0, cc.1, pid, 0.0, 0.0)] ++ blp
; cc.2 := cc.2 - pf
; xss := xss ++ [bl]
)

; (cc.2 > 0 -> p?pid
; bl := []
; (cc.2 > 0)

*>(bl := [(0, cc.1, pid, 0.0, 0.0)] ++ bl
; cc.2 := cc.2 - 1
)

; xss := xss ++ [bl]
| cc.2 = 0 -> skip
)

)
; a!xss
)

]|

proc ConG(chan a!: %NCUL # [[box]], gc!: nat, con?: [container]
, gpf!, pf?: nat) =

|[chan c, p: nat
:: (||, j<-0..%NCUL-1, SConG(a.j, c, p, gc, con, gpf, pf)) || CidG(c) || PidG(p)
]|

func init_pos_conv(val i: xc_index, n: nat) -> ul_index =
|[((i >= 0 and i < n/3) -> ret 3*i

| (i >= n/3 and i< 2*n/3) -> ret (3*(i- (n div 3)) + 1)
| (i >= 2*n/3 and i < n) -> ret (3*(i-2*(n div 3)) + 2)
)

]|

proc XC(val id: nat, chan l!: logentry, xcf!: %NCUL#void, xc!: %NCUL#nat
, xcd?: void, xcr!: %NCUL#nat, xca?: bool,

val init_pos: nat) =
|[var myName: string = name4me("XC", id), ulid: nat, pos: nat = init_pos

, conv_needed: bool, target_pos: nat = init_pos
, u: ->nat = uniform(0, 2), v: nat

:: *((target_pos /= pos -> xcf.pos!; delay %XCCHANGETIME
; pos := target_pos; xc.pos!id

| target_pos = pos -> xc.pos!id
)

; l!(myName, "util", 1, 0.0)
; xcd?
; l!(myName, "util", 1, 1.0)

49

; conv_needed := false; v := sample u
; (v>1 -> skip

; (pos > 0 and not conv_needed -> xcr.(pos-1)!id; xca?conv_needed
; (conv_needed -> target_pos := pos - 1 | not conv_needed -> skip)
| pos = 0 or conv_needed -> skip
)

; (pos < %NCUL-1 and not conv_needed -> xcr.(pos+1)!id; xca?conv_needed
; (conv_needed -> target_pos := pos + 1 | not conv_needed -> skip)
| pos = %NCUL-1 or conv_needed -> skip
)

| v<2 -> skip
; (pos < %NCUL-1 and not conv_needed -> xcr.(pos+1)!id; xca?conv_needed

; (conv_needed -> target_pos := pos + 1 | not conv_needed -> skip)
| pos = %NCUL-1 or conv_needed -> skip
)

; (pos > 0 and not conv_needed -> xcr.(pos-1)!id; xca?conv_needed
; (conv_needed -> target_pos := pos - 1 | not conv_needed -> skip)
| pos = 0 or conv_needed -> skip
)

)
)

]|

func calcdelay(val sl: nat) -> real =
|[(sl <= %MINLENGTH_LARGE -> ret %UNLOADTIME_SMALL

| sl > %MINLENGTH_LARGE -> ret %UNLOADTIME_LARGE
)

]|

proc ConUnl(val id: nat, chan l!: logentry, a?: [[box]], bi?: nat, b!: box
, bd!: boxdata, xcr?: nat, xca!: %NXC#bool
, xcf?: void, xc?: nat, xcd!: %NXC#void, lfs!: nat
, gsl!: nat, rsl?: nat) =

|[var myName: string = name4me("CU", id), xss: [[box]], xs: [box], x, xd: box
, sl: nat, cur: nat = 0, curdelay: real, i, xcid: nat
, conv_present: bool = false, pid: nat, bid: nat, nx: nat

:: *((xcr?i; (conv_present -> xca.i!false
| not conv_present -> xca.i!true; conv_present := true
)

| xcf?; conv_present := false
)

)
|| *(a?xss

; xc?xcid; conv_present := true
; l!(myName, "util", 1, 0.0); nx := 0
; (len(xss) > 0)

*> (xs := hd(xss); xss := tl(xss)
; xd := hd(xs); pid := xd.2; bd!xd; !!time, " cu: ", id, ", sku: ", xd.1, "\n"
; (xd.1 = cur -> skip
| xd.1 /= cur -> delay %OPERATORCHANGETIME_SKU

; cur := xd.1; gsl!(xd.1); rsl?sl; curdelay := calcdelay(sl)
)

; (len(xs) > 0)

*> (x := hd(xs); (x.0 = 0 -> bi?bid; x.0 := bid
| x.0 > 0 -> skip
); x.2 := pid; xs := tl(xs)

; (len(xs) = 1 -> bi?bid; xd := hd(xs)
; xd.0 := bid; xs := [xd]; lfs!bid

| len(xs) /= 1 -> skip
)

; x.3 := time; x.4 := time; delay curdelay; b!x; nx := nx + 1
)

)
; l!(myName, "util", 1, 1.0)
; xcd.xcid!

50 χ Model

; delay %CONTAINERCHANGETIME
)

]|

func inlistspid(val id: spid, ids: [spid]) -> bool =
|[ret (+, x <- ids, x = id, 1) > 0]|

proc PreSortC(val id: nat, chan bd?: boxdata, ab!: (nat, boxdata), ba?: bool
, aom? :boxdata, tom!: bool
, gap!: nat, rap?: bool)=

|[var myName: string = name4me("PreC", id), xd: boxdata
, ap: bool, mids: [spid] = [], buf: bool, cur: boxdata
, mid: spid = (0, 0), same: bool

:: *(bd?xd
; gap!xd.1; rap?ap
; (not ap -> mids := mids ++ [(xd.1, xd.2)]
| ap -> ab!(id, xd); ba?buf

; (buf -> skip
| not buf -> mids := mids ++ [(xd.1, xd.2)]
)

)
| aom?cur; same := (cur.1, cur.2) = mid
; (same -> skip
| not(same) -> mids := mids -- [mid]; mid := (cur.1, cur.2)
)

; tom!(inlistspid((cur.1, cur.2), mids))
)

]|

proc PreSortG(val id: nat, chan l!: logentry, a?: box
, aom!: boxdata, tom?: bool, b!, m!: box)=

|[var myName: string = "PreG", x: box, man: bool, t: real
::*(a?x; aom!x; tom?man

; (man -> t := time - x.3; m!x
; l!(myName, "a/m", 2, 0.0)
; l!(myName, "mx", 2, t)

| not man -> t := time - x.3; x.4 := time; b!x
; l!(myName, "a/m", 2, 1.0)
; l!(myName, "ax", 2, t)
; l!(myName, "EPTx", 0, t)

)
)

]|

proc PreSort(val id: nat, chan l!: logentry, a?, b! , m!: box, bd?: boxdata
, ab!: (nat, boxdata), ba?: bool, gap!: nat
, rap?: bool) =

|[chan aom: boxdata, tom: bool
:: PreSortC(id, bd, ab, ba, aom, tom, gap, rap) || PreSortG(id, l, a, aom, tom, b, m)
]|

proc UnlA(chan l!: logentry, a?: %NCUL#[[box]], b!, m!: box
, ab!: (nat, boxdata), ba?: %NCUL#bool, lfs!: nat
, gsl!: nat, rsl?: nat, gap!: nat, rap?: bool) =

|[chan bi: nat, xcr: %NCUL#nat, xca: %NXC#bool, xcf: %NCUL#void, xc: %NCUL#nat
,xcd: %NXC#void, x: %NCUL#box, xd: %NCUL#boxdata

:: (||, j<-0..%NCUL-1,
(ConUnl(j, l, a.j, bi, x.j, xd.j, xcr.j, xca, xcf.j, xc.j, xcd, lfs, gsl, rsl)
|| PreSort(j, l, x.j, b, m, xd.j, ab, ba.j, gap, rap)

)
)

|| (||, j<-0..%NXC-1, XC(j, l, xcf, xc, xcd.j, xcr, xca.j, init_pos_conv(j, %NCUL)))
|| BidG(bi)
]|

51

func laneLength() -> nat = |[ret %LANELENGTH]|

func boxPerLane(val sl: nat) -> nat = |[ret laneLength() div sl]|

func lanesReq(val sl, pf: nat) -> nat =
|[var bpl: nat = boxPerLane(sl)
:: (pf mod bpl = 0 -> ret pf div bpl

| pf mod bpl /= 0 -> ret pf div bpl + 1
)

]|

func box2PostS(val idsp: spid, stps: [(spid, nat)]) -> nat =
|[var stp: (spid, nat)
:: (len(stps) > 0)

*> (stp := hd(stps); stps := tl(stps)
; (stp.0 = idsp -> ret stp.1

| stp.0 /= idsp -> skip
)

)
; !!"ERROR! This should never occur: box is not assigned to a postsorter\n"
]|

func selectPostS(val psas: %NPAL*nat) -> (bool, nat) =
|[var i: nat = 0, res: (bool, nat) = (false, 0), max_i: nat = 0
:: (i <= %NPAL-1)

*> ((psas.i > max_i -> res := (true, i); max_i := psas.i
| psas.i <= max_i -> skip
); i := i + 1

)
; ret res
]|

func inlist(val id: nat, ids: [nat]) -> bool =
|[ret (+, x <- ids, x = id, 1) > 0]|

func init_psas() -> %NPAL*nat =
|[var init: %NPAL*nat, i: nat = 0
:: i<%NPAL *> (init.i := 0; i := i + 1); ret init
]|

proc SortC(chan lg!: logentry, ab?: (nat, boxdata), rr!: %NPAL#nat, bfa?: %NPAL#nat
, cr!: %NPAL#(spid, nat), ba!: %NCUL#bool, rps?: boxdata, aps!: nat
, lfs?: nat, lbr!: %NPAL#nat
, gsl!: nat, rsl?: nat, gpf!: nat, rpf?: nat) =

|[var myName: string = "SorC", pre: nat, bd, bdm: boxdata, sku, pid: nat, lr: nat
, psas: %NPAL*nat = init_psas(), as: bool, psid: nat, stps: [(spid, nat)] = []
, l: nat, ls: [nat], ps: nat, lb: bool, sl, pf: nat

:: *(ab?(pre, bd); sku, pid := bd.1, bd.2
; gsl!sku; rsl?sl; gpf!sku; rpf?pf; lr := lanesReq(sl, pf)
; (||, j <- 0..%NPAL-1, rr.j!lr; bfa.j?(psas.j))
; (as, psid) := selectPostS(psas)
; (as -> stps := stps ++ [((sku, pid), psid)]; cr.psid!((sku, pid), lr)

| not as -> skip
)

; ba.pre!as
| lfs?l; ls := ls ++ [l]
| rps?bdm
; ps := box2PostS((bdm.1, bdm.2), stps)
; lb := inlist(bdm.0, ls)
; (lb -> ls := ls -- [bdm.0]; stps := stps -- [((bdm.1, bdm.2), ps)]

; lbr.ps!bdm.0
| not(lb) -> skip
)

; aps!ps
)

52 χ Model

]|

proc SortG(chan l!: logentry, a?: box, rps!: boxdata, aps?: nat, b!: %NPAL#box) =
|[var myName: string = "Sort", x, y: box, xs: [box] = [], psid: nat

, tt, t: real, dt: real = 3600.0/%SORTERHOURCAPACITY
:: *(a?x; x.4 := x.4 + %BOXTRAVELTIME ; xs := xs ++ [x])
|| tt := time + dt

; *(len(xs)>0 -> skip; y := hd(xs); xs := tl(xs)
; t := y.4 - time; (t>0.0 -> delay t | t<=0.0 -> skip)
; t := tt - time; (t>0.0 -> delay t | t<=0.0 -> skip); tt := time + dt
; rps!y; aps?psid
; t := time - y.4; y.4 := time; b.psid!y
; l!(myName, "EPTx", 0, t); l!(myName, "x", 2, t)
)

]|

proc Sort(chan l!: logentry, a?: box, b!: %NPAL#box, ab?: (nat, boxdata)
, rr!: %NPAL#nat, bfa?: %NPAL#nat, cr!: %NPAL#(spid, nat)
, ba!: %NCUL#bool, lfs?: nat, lbr!: %NPAL#nat
, gsl!: nat, rsl?: nat, gpf!: nat, rpf?: nat) =

|[chan rps: boxdata, aps: nat
:: SortC(l, ab, rr, bfa, cr, ba, rps, aps, lfs, lbr, gsl, rsl, gpf, rpf)
|| SortG(l, a, rps, aps, b)
]|

func lanesAv(val la: %NBUF*(spid, nat)) -> nat =
|[ret (+, j <- 0..%NBUF-1, ((la.j).0).0 = 0, 1)]|

func box2Lane(val idsp: spid, la: %NBUF*(spid, nat), sl: nat) -> nat =
|[var i: nat = 0, bpl: nat = boxPerLane(sl), b: bool
:: (i < %NBUF)

*> (b := la.i.0 = idsp and la.i.1 < bpl
; (b -> ret i | not b -> i := i + 1)
)

; !!"ERROR! This should never occur: box not assigned to lane\n"
]|

func initLa() -> %NBUF*(spid, nat) =
|[var init: %NBUF*(spid, nat), i: nat = 0
:: i<%NBUF *> (init.i := ((0, 0), 0); i := i + 1); ret init]|

func resLane(val la: %NBUF*(spid, nat), rs: (spid, nat)) -> %NBUF*(spid, nat) =
|[var i: nat = 0, nl: nat = rs.1
:: (i < %NBUF and nl > 0)

*> ((la.i.0.0 = 0 -> la.i.0 := rs.0; nl := nl - 1
| la.i.0.0 /= 0 -> skip
)

; i := i + 1
)
; ret la
]|

func inlistbd(val id: boxdata, ids: [boxdata]) -> bool =
|[ret (+, x <- ids, x = id, 1) > 0]|

func skupal2Lanes(val psid: spid, la: %NBUF*(spid, nat)) -> [nat] =
|[var i: nat = 0, ls: [nat] = []
:: (i < %NBUF)

*>((la.i.0 = psid -> ls := ls ++ [i]
| la.i.0 /= psid -> skip
)

; i := i + 1
)

; ret ls
]|

53

proc PostSortC(val id: nat, chan lg!: logentry, rr?: nat, bfa!: nat
, cr?: (spid, nat), le?: nat, fl!: [nat]
, rl?: boxdata, lbr?: nat
, gsl!: nat, rsl?: nat, al!: nat, cd?: void) =

|[var myName: string = name4me("PoSC", id), r, nla: nat
, la: %NBUF*(spid, nat) = initLa(), rs: (spid, nat), lid: nat
, bd: boxdata, l: nat, lb: nat, lbs: [nat], lfp: bool, lf: [nat], sl: nat

:: *(rr?r; nla := lanesAv(la)
; (nla < r -> nla := 0

| nla >= r -> skip
)

; bfa!nla
| cr?rs; la := resLane(la, rs)
| le?lid; la.lid := ((0, 0), 0)
| lbr?lb; lbs := lbs ++ [lb]
| rl?bd; gsl!(bd.1); rsl?sl
; l := box2Lane((bd.1, bd.2), la, sl); al!l; cd?; (la.l).1 := (la.l).1 + 1
; lfp := inlist(bd.0, lbs)
; (lfp -> lbs := lbs -- [bd.0]; lf := skupal2Lanes((bd.1, bd.2), la)

; fl!lf
| not(lfp) -> skip
)

)
]|

proc PostSortG(chan lg!: logentry, a?: box, rl!: boxdata, al?: nat, b!: %NBUF#box
,cld?: %NBUF#void, cd!: void) =

|[var myName: string = "PoSG", x: box, l: nat
:: *(a?x; rl!x; al?l; b.l!x; cld.l?; cd!)
]|

proc PostSort(val id: nat, chan l!: logentry, a?: box, b!: %NBUF#box, rr?: nat
, bfa!: nat, cr?: (spid, nat), le?: nat
, fl!: [nat], lbr?: nat, gsl!: nat, rsl?: nat
, cld?: %NBUF#void) =

|[chan rl: boxdata , al: nat, cd: void
:: PostSortC(id, l, rr, bfa, cr, le, fl, rl, lbr, gsl, rsl, al, cd)
|| PostSortG(l, a, rl, al, b, cld, cd)
]|

proc BufferLane(val id1, id2: nat, chan l!: logentry, a?: box, cld!: void
, b!: [box], le!: nat) =

|[var myName: string = name4me("BufL", 10*id1+id2), x: box, xs: [box] = []
:: *(a?x

; (len(xs) = 0 -> l!(myName, "util", 1, 0.0)
| len(xs) > 0 -> l!(myName, "util", 1, 1.0)
)

; xs := xs ++ [x]; cld!
| b!xs; xs := []; le!id2; l!(myName, "util", 1, 1.0)
)

]|

func getPalId(val xs: [box]) -> nat = |[ret hd(xs).2]|

proc Pal(val id: nat, chan l!: logentry, a?: %NBUF#[box], b!: pallet, fl?: [nat]
, gpt!: (nat, nat), pt?: real) =

|[var myName: string = name4me("Pal", id), i, j, pid: nat, lr, ls: [nat]
, lss: [[nat]] = [], xs, ys: [box], t: real, last_sku: nat = 0

:: *(fl?lr; lss := lss ++ [lr])
|| *(len(lss)>0 -> l!(myName, "util", 1, 0.0)

; ls := hd(lss); lss := tl(lss); ys := []; i:= 0
; (i < len(ls)) *> (j:= hd(ls); a.j?xs; ys := ys ++ xs; ls := tl(ls))
; (last_sku = hd(ys).1 -> skip

| last_sku /= hd(ys).1 -> delay %PALLETIZERCHANGETIME_SKU

54 χ Model

; last_sku := hd(ys).1
)

; pid := getPalId(ys); gpt!(hd(ys).1, len(ys)); pt?t
; delay t + %PALLETCHANGETIME; l!("Exit", "pT", 2, t)
; b!(pid, ys); l!(myName, "util", 1, 1.0)
)

]|

proc SPalA(val id: nat, chan l!: logentry, a?: box, b!: pallet, rr?: nat
, bfa!: nat, cr?:(spid, nat), gsl!: nat, rsl?: nat
, lbr?: nat, gpt!: (nat, nat), pt?: real) =

|[chan c: %NBUF#box, d: %NBUF#[box], le: nat, fl: [nat], cld: %NBUF#void
:: PostSort(id, l, a, c, rr, bfa, cr, le, fl, lbr, gsl, rsl, cld)
|| (||, j<-0..%NBUF-1, BufferLane(id, j, l, c.j, cld.j, d.j, le))
|| Pal(id, l, d, b, fl, gpt, pt)
]|

proc PalA(chan l!: logentry, a?: %NPAL#box, b!: pallet, rr?: %NPAL#nat
, bfa!: %NPAL#nat, cr?: %NPAL#(spid, nat), gsl!: nat, rsl?: nat
, lbr?: %NPAL#nat, gpt!: (nat, nat), pt?: real) =

|[(||, j<-0..%NPAL-1, SPalA(j, l, a.j, b, rr.j, bfa.j, cr.j, gsl, rsl, lbr.j, gpt, pt))
]|

proc PalExit(chan l!: logentry, a?: pallet) =
|[var myName: string = "Exit", p: pallet, px: [box], x: box, t: real
:: *(a?p ; px := p.1

; l!(myName, "pf", 2, 1.0*len(px)); len(px) > 0

*> (x := hd(px) ; px := tl(px)
; t := time - x.4 ; l!(myName, "EPTx", 0, t) ; l!(myName, "x", 2, t)
; t := time - x.3 ; l!(myName, "EPTt", 0, t) ; l!(myName, "EPTt", 2, t)
)

)
]|

proc ManExit(chan a?: box) = |[var x: box :: *(a?x)]|

model M(val cdb: [container], sdb: [skudata]) =
|[chan l: logentry, a: %NCUL#[[box]], b, m: box, ab: (nat, boxdata)

, ba: %NCUL#bool, c: %NPAL#box, d: pallet, bfa: %NPAL#nat
, rr: %NPAL#nat, cr: %NPAL#(spid, nat), lfs: nat, lbr: %NPAL#nat
, gc: nat, con: [container], gpf, pf: 2#nat, gsl, sl: 3#nat
, gap: nat, ap: bool, gpt: (nat, nat), pt: real

:: ConG(a, gc, con, gpf.0, pf.0)
|| UnlA(l, a, b, m, ab, ba, lfs, gsl.0, sl.0, gap, ap)
|| Sort(l, b, c, ab, rr, bfa, cr, ba, lfs, lbr, gsl.1, sl.1, gpf.1, pf.1)
|| PalA(l, c, d, rr, bfa, cr, gsl.2, sl.2, lbr, gpt, pt)
|| DB(cdb, sdb, gc, con, gpf, pf, gsl, sl, gap, ap, gpt, pt)
|| ManExit(m) || PalExit(l, d) || logbook(l)
]|

func selindex(val element: string, maparray: [string]) -> nat =
|[var i: nat = 0, s: string
:: len(maparray) > 0

*> (s := hd(maparray); maparray := tl(maparray);
(s = element -> ret i
| s /= element -> i := i + 1
)

)
; ret i
]|

func selvalue(val index: nat, maparray: [string]) -> string =
|[var i: nat = 0
:: i<index *> (maparray := tl(maparray); i := i + 1)

55

; ret hd(maparray)
]|

func calc_var(val N: nat, cur_var, cur_mean, new_value: real) -> real =
|[(N > 0 -> ret (N - 1)/N * cur_var + (new_value - cur_mean)^2 / (N + 1)

| N = 0 -> ret 0.0)
]|

func calc_mean(val N: nat, cur_mean, new_value: real) -> real =
|[ret (N / (N + 1) * cur_mean + new_value / (N + 1))]|

proc logbook(chan l?: logentry) =
|[var i, vi: nat, meas: 1000*(real, real, nat, nat), process, variable: string

, logtype: nat, value: real, inter_sample_time: real = 300.0, lt
, t: real, tmap: [string] = []

:: *(l?(process, variable, logtype, value)
; vi := selindex(process ++ variable, tmap)
; (vi = len(tmap) -> tmap := tmap ++ [process ++ variable]

; meas.vi.0 := 0.0
; meas.vi.1 := 0.0
; meas.vi.2 := 0
; meas.vi.3 := logtype

| vi < len(tmap) -> skip
)

; (logtype = 0 -> !!time, " ", process, " ", variable, " ", value, "\n"
| logtype = 1 -> t:= time

; meas.vi.1 := meas.vi.1 + (t - meas.vi.0)*value
; meas.vi.0 := t
; (value = 0.0 -> meas.vi.2 := 1

| value = 1.0 -> meas.vi.2 := 0
)

| logtype = 2 -> meas.vi.1 := calc_var(meas.vi.2, meas.vi.1, meas.vi.0, value)
; meas.vi.0 := calc_mean(meas.vi.2, meas.vi.0, value)
; meas.vi.2 := meas.vi.2 + 1

)
)

|| *(delay inter_sample_time
; i := 0 ; lt := time
; (i < len(tmap))

*>(((meas.i.3 = 2 and meas.i.2 > 1) ->
!!lt, " ", selvalue(i, tmap), " ", meas.i.0, " ", meas.i.1, " ", meas.i.2, "\n"

| meas.i.3 = 1 ->
!!lt, " ", selvalue(i, tmap), " ", (meas.i.1 + (lt - meas.i.0)*meas.i.2)/lt, "\n"

| meas.i.3 = 0 -> skip
| (meas.i.3 = 2 and meas.i.2 < 2) -> skip
)

; i := i + 1
)

)
]|

56 χ Model

Appendix C

Constants Pre-processor
This appendix lists how the use of constants in a χ model can be achieved by a simple
script, which is included in the shell initialization file, e.g., .bashrc. The script assumes
the existence of some file filename.chic with the extension .chic, which is parsed to
filename.chi that contains the χ model using AWK [AWK03].

The script picks up lines of the form ‘DEFINE %VARIABLE value’ in the χ code and
transforms occurrences of the form ‘%VARIABLE([+-][1-9]+)?’ elsewhere in the code
into the predefined value modified by the optional argument.1

The script takes the following form:

function chicp {
filename=‘basename $1 .chic‘
if [-f $filename.chic]; then

if [-f $filename.chi]; then
rm $filename.chi

fi
gawk ’! /%[A-Z]+/ && ! /^DEFINE/ { print $0 }

/^DEFINE/ { gs[$2]=$3 ; gsub($2,"") }
/%[A-Z]+/ { for (i in gs) {

for (j=1 ; j<=9 ; j++) {
mi = i"-"j ; gsub(mi,gs[i]-j)
mi = i"+"j ; gsub(mi,gs[i]+j)

}
mi = i ; gsub(mi,gs[i])

}
print $0

}’ ${filename}.chic > ${filename}.chi
fi
~/bin/chic ${filename}.chi

}

1The last part, ([+-][1-9]+)?, is a regular expression [Fri06] meaning that the variable can optionally be
followed by a + or - sign and a value of 1 or more digits.

57

58 Constants Pre-processor

Appendix D

Data Sets

SKU nr. # boxes # SKU nr. # boxes # SKU nr. # boxes # SKU nr. # boxes

1 1 1020 2 2 3008 3 3 600 4 4 996
5 5 688 6 6 240 6 7 1215 7 8 720
8 9 72 8 10 610 9 11 3591 10 12 976
11 13 360 11 14 672 12 15 56 12 16 756
13 17 1200 14 18 540 14 19 450 14 20 72
14 21 80 14 22 288 14 23 108 15 17 1200
16 24 336 16 25 192 16 13 500 16 26 594
17 27 420 18 28 1287 19 29 1062 20 30 1344
21 31 1098 22 32 560 22 33 352 22 34 240
23 35 800 24 36 180 24 37 2080 25 38 405
25 39 432 25 40 24 26 41 702 27 42 752
28 43 105 28 44 1360 29 45 352 29 46 300
30 47 504 31 48 588 31 49 448 32 50 1645
33 51 500 33 52 345 34 53 2115 34 54 24
35 55 40 35 56 24 35 57 24 35 58 30
35 59 24 35 60 48 35 61 24 35 62 24
35 63 60 36 64 630 37 65 1856 38 66 612
39 67 72 39 68 2958 40 64 630 41 69 240
41 70 368 41 71 180 42 72 288 43 73 708
44 74 2046 45 75 670 46 76 360 46 77 744
46 78 25 46 79 360 47 80 1044 48 81 1840
49 12 976 50 82 672 51 83 297 51 84 495
51 85 336 52 24 288 52 86 60 52 87 225
52 88 120 52 89 84 53 65 1856 54 90 540
55 91 3024 56 92 600 57 93 1136 58 94 976
59 95 198 59 96 380 59 97 968 60 98 378
60 99 48 61 72 288 62 100 704 63 101 1650
64 102 660 65 103 1860 65 104 96 65 29 450
66 105 705 67 106 276 68 107 1292 68 108 2508
68 109 120 68 110 150 69 111 976 70 112 1044
71 113 80 71 46 240 72 114 780 73 94 976
74 115 324 75 36 180 75 116 660 75 117 1224
76 118 870

Table D.1: The contents of the 76 containers in terms of SKU types and number of boxes.

59

SKU #/layer ` (mm) AP layers t (s) SKU #/layer ` (mm) AP layers t (s)

1 20 919 true 4 10.5 2 64 449 true 8 20.3
3 12 543 true 4 10.5 4 12 467 true 4 10.5
5 16 541 true 4 10.5 6 24 391 false 0 0.0
7 45 419 true 9 22.5 8 15 815 true 3 8.0
9 12 751 true 2 5.2 10 10 617 false 0 0.0
11 63 406 true 9 22.5 12 16 530 true 4 10.5
13 20 495 true 4 10.5 14 16 492 true 4 10.5
15 28 436 true 7 17.8 16 12 441 true 4 10.5
17 15 924 true 3 8.0 18 36 287 false 0 0.0
19 30 523 true 6 15.2 20 72 530 false 0 0.0
21 80 322 false 0 0.0 22 48 398 false 0 0.0
23 36 365 false 0 0.0 24 48 419 true 8 20.3
25 48 421 true 8 20.3 26 99 370 false 0 0.0
27 15 624 true 3 8.0 28 33 701 true 3 8.0
29 18 782 true 3 8.0 30 32 558 true 4 10.5
31 18 706 true 3 8.0 32 16 439 true 4 10.5
33 16 480 true 4 10.5 34 24 411 true 6 15.2
35 32 419 true 8 20.3 36 30 695 true 3 8.0
37 40 558 false 0 0.0 38 15 650 false 0 0.0
39 16 530 true 4 10.5 40 12 670 false 0 0.0
41 18 579 true 6 15.2 42 16 571 true 4 10.5
43 15 632 true 3 8.0 44 40 574 true 5 13.4
45 32 500 true 8 20.3 46 12 769 true 4 10.5
47 18 1031 true 2 5.2 48 21 690 true 3 8.0
49 14 579 true 2 5.2 50 35 459 true 7 17.8
51 20 533 true 5 13.4 52 15 541 true 5 13.4
53 45 299 false 0 0.0 54 12 645 true 3 8.0
55 20 530 true 4 10.5 56 6 520 true 2 5.2
57 12 530 true 4 10.5 58 6 541 true 2 5.2
59 12 541 true 4 10.5 60 8 629 true 2 5.2
61 12 541 true 4 10.5 62 12 541 true 4 10.5
63 20 541 true 4 10.5 64 10 797 true 2 5.2
65 32 426 true 8 20.3 66 12 690 true 2 5.2
67 8 685 true 2 5.2 68 102 330 false 0 0.0
69 24 480 true 6 15.2 70 16 480 true 4 10.5
71 20 558 true 5 13.4 72 12 660 true 3 8.0
73 12 701 true 2 5.2 74 33 810 true 3 8.0
75 10 584 true 2 5.2 76 60 289 false 0 0.0
77 24 429 true 4 10.5 78 25 599 true 5 13.4
79 36 510 true 6 15.2 80 18 485 true 6 15.2
81 40 408 true 8 20.3 82 12 541 true 4 10.5
83 99 360 false 0 0.0 84 99 299 false 0 0.0
85 24 408 true 6 15.2 86 30 391 false 0 0.0
87 9 629 true 3 8.0 88 12 640 true 3 8.0
89 12 609 true 3 8.0 90 12 723 true 3 8.0
91 56 449 true 7 17.8 92 10 711 true 2 5.2
93 16 845 true 2 5.2 94 16 530 true 4 10.5
95 99 383 false 0 0.0 96 20 546 true 5 13.4
97 44 325 false 0 0.0 98 18 424 true 6 15.2
99 16 510 true 4 10.5 100 16 551 true 4 10.5
101 33 891 true 3 8.0 102 12 533 true 4 10.5
103 60 929 false 0 0.0 104 12 820 true 2 5.2
105 15 419 true 5 13.4 106 12 568 true 4 10.5
107 68 510 false 0 0.0 108 66 660 false 0 0.0
109 30 469 true 6 15.2 110 50 360 false 0 0.0
111 16 878 true 2 5.2 112 18 485 true 6 15.2
113 16 680 true 4 10.5 114 12 680 true 3 8.0
115 9 599 true 3 8.0 116 30 579 false 0 0.0
117 72 421 true 6 15.2 118 15 629 true 3 8.0

Table D.2: SKU data. Listed are respectively the number of boxes per layer, the length of each
box, whether or not the boxes are automatically palletizable, the number of layers per pallet,
and the time it takes to assemble one layer of a pallet.

60 Data Sets

