22 research outputs found

    An Analysis of the introduction of Wireless Technology to Manage the Restaurant Industry

    No full text
    Society is changing. Today’s society doesn’t have the exactly same needs than before. This is the knowledge era, technological era. It is a fast changing world, it is changing as new technological applications are changing, improving, and innovating. Political and social trends have new needs, and new technological applications fill in the blanks of those needs. Technology is shaping the world. The day when technological innovations would be changing the way we do business has come. The trend of applying high technology to unimaginable applications is now a reality. The context of our study is the hospitality industry in a time when competitiveness is vital to survive. The hospitality industry (which includes businesses like restaurants and hotels) is an old industry that is experiencing a change in “the way they do business”. Wireless technology is delivering so big advantages to the restaurant industry, that this trend of using wireless technology cannot be ignored. How was this trend originated? Was it originated because technology found its way to be embodied into customized applications used to satisfy very specific needs? Or was it originated because the society was lacking of customized applications in order to satisfy its specific needs? In other words, was there a technology-push strategy or a market-pull strategy? Whatever was the origin, it is dictating a new trend in the hospitality industry

    Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts

    No full text
    Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX) or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID) mice from Epstein-Barr virus (EBV)–infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab) to 5.6% (n = 160 with rituximab), and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth

    Molecular epidemiology of dengue fever outbreaks in Bhutan, 2016-2017.

    No full text
    Dengue continues to pose a significant public health problem in tropical and subtropical countries. In Bhutan, first outbreak of dengue fever (DF) was reported in 2004 in a southern border town, followed by sporadic cases over the years. In this study, we analysed DF outbreaks that occurred in 3 different places during the years 2016 and 2017. A total of 533 cases in 2016 and 163 in 2017 were suspected of having of DF, where young adults were mostly affected. A total of 240 acute serum specimens collected and analyzed for serotype by nested RT-PCR revealed predominance of serotypes 1 and 2 (DENV-1 and 2). Phylogenetic analysis using envelope gene for both the serotypes demonstrated cosmopolitan genotype which were closely related to strains from India, indicating that they were probably imported from the neighboring country over the past few years

    GCN2 Protein Kinase Is Required to Activate Amino Acid Deprivation Responses in Mice Treated with the Anti-cancer Agent l-Asparaginase*

    No full text
    Asparaginase depletes circulating asparagine and glutamine, activating amino acid deprivation responses (AADR) such as phosphorylation of eukaryotic initiation factor 2 (p-eIF2) leading to increased mRNA levels of asparagine synthetase and CCAAT/enhancer-binding protein β homologous protein (CHOP) and decreased mammalian target of rapamycin complex 1 (mTORC1) signaling. The objectives of this study were to assess the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and to compare the effects of asparaginase on mTORC1 to that of rapamycin. In experiment 1, asparaginase increased hepatic p-eIF2 in wild-type mice and mice with a liver-specific PERK deletion but not in GCN2 null mice nor in GCN2-PERK double null livers. In experiment 2, wild-type and GCN2 null mice were treated with asparaginase (3 IU per g of body weight), rapamycin (2 mg per kg of body weight), or both. In wild-type mice, asparaginase but not rapamycin increased p-eIF2, p-ERK1/2, p-Akt, and mRNA levels of asparagine synthetase and CHOP in liver. Asparaginase and rapamycin each inhibited mTORC1 signaling in liver and pancreas but maximally together. In GCN2 null livers, all responses to asparaginase were precluded except CHOP mRNA expression, which remained partially elevated. Interestingly, rapamycin blocked CHOP induction by asparaginase in both wild-type and GCN2 null livers. These results indicate that GCN2 is required for activation of AADR to asparaginase in liver. Rapamycin modifies the hepatic AADR to asparaginase by preventing CHOP induction while maximizing inhibition of mTORC1
    corecore