40 research outputs found

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention

    Projekt WAYflow - Mobilitaet in Ballungsraeumen. Aktivitaeten der Deutschen Bahn AG im WAYflow-Feldversuch 'Verkehrsmanagement'

    No full text
    Available from TIB Hannover: F03B791 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman

    Eine neue trifokale Intraokularlinse - Erste Ergebnisse und Erfahrungen

    No full text

    Projekt WAYflow - Mobilitaet in Ballungsraeumen. Evaluationsbericht Feldversuch D und Beteiligung der DB AG am Feldversuch E

    No full text
    Available from TIB Hannover: F03B792 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman

    Prediction of clozapine metabolism by on-line electrochemistry/liquid chromatography/mass spectometry

    No full text
    Combining electrochemical conversion, liquid chromatography and electrospray ionization mass spectrometry (EC/LC/ESI-MS) on-line allows the rapid identification of possible oxidation products of clozapine (CLZ) in the absence and in the presence of glutathione. CLZ is, depending on the applied potential, oxidized to various products in an electrochemical flow-through cell using a porous glassy carbon working electrode. Several hydroxylated and demethylated species are detected on-line using LC/MS. While hydroxy-CLZ is most abundant at a potential of 400 mV, demethylation occurs more readily at higher potentials (at around 700 mV versus Pd/H(2) reference). In the presence of glutathione (GSH), various isomeric glutathione adducts and respective products of further oxidation can be identified. The thioadducts are characterized by tandem MS. Mono-GSH and bis-GSH derivatives can be seen in the chromatograms. The results correlate well with the cyclic voltammetric profile of CLZ. The data are relevant from a pharmacological point of view, since similar metabolites (phases I and II) have been reported in the literature. The EC/LC/MS and EC/MS methods should be valuable tools that can be used to anticipate and understand the metabolization patterns of molecules of pharmacological interest and to point out reactive intermediates.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore