937 research outputs found
A computer program for the analysis of the dynamic bending-torsion coupling in bridges using a mini-computer
The analysis of modes and natural frequencies is of primary interest in the computation of the response of bridges. In this article the transfer matrix method is applied to this problem to provide a computer code to calculate the natural frequencies and modes of bridge-like structures. The Fortran computer code is suitable for running on small computers and results are presented for a railway bridge
Near Scale Invariance with Modified Dispersion Relations
We describe a novel mechanism to seed a nearly scale invariant spectrum of
adiabatic perturbations during a non-inflationary stage. It relies on a
modified dispersion relation that contains higher powers of the spatial
momentum of matter perturbations. We implement this idea in the context of a
massless scalar field in an otherwise perfectly homogeneous universe. The
couplings of the field to background scalars and tensors give rise to the
required modification of its dispersion relation, and the couplings of the
scalar to matter result in an adiabatic primordial spectrum. This work is meant
to explicitly illustrate that it is possible to seed nearly scale invariant
primordial spectra without inflation, within a conventional expansion history.Comment: 7 pages and no figures. Uses RevTeX
Can We See Lorentz-Violating Vector Fields in the CMB?
We investigate the perturbation theory of a fixed-norm, timelike
Lorentz-violating vector field. After consistently quantizing the vector field
to put constraints on its parameters, we compute the primordial spectra of
perturbations generated by inflation in the presence of this vector field. We
find that its perturbations are sourced by the perturbations of the inflaton;
without the inflaton perturbation the vector field perturbations decay away
leaving no primordial spectra of perturbations. Since the inflaton perturbation
does not have a spin-1 component, the vector field generically does not
generate any spin-1 ``vector-type'' perturbations. Nevertheless, it will modify
the amplitude of both the spin-0 ``scalar-type'' and spin-2 ``tensor-type''
perturbation spectra, leading to violations of the inflationary consistency
relationship.Comment: 36 pages, 1 fig, RevTex4, Submitted to PR
Creating Statistically Anisotropic and Inhomogeneous Perturbations
In almost all structure formation models, primordial perturbations are
created within a homogeneous and isotropic universe, like the one we observe.
Because their ensemble averages inherit the symmetries of the spacetime in
which they are seeded, cosmological perturbations then happen to be
statistically isotropic and homogeneous. Certain anomalies in the cosmic
microwave background on the other hand suggest that perturbations do not
satisfy these statistical properties, thereby challenging perhaps our
understanding of structure formation. In this article we relax this tension. We
show that if the universe contains an appropriate triad of scalar fields with
spatially constant but non-zero gradients, it is possible to generate
statistically anisotropic and inhomogeneous primordial perturbations, even
though the energy momentum tensor of the triad itself is invariant under
translations and rotations.Comment: 20 pages, 1 figure. Uses RevTeX
Unconventional magnetization plateaus in a Shastry-Sutherland spin tube
Using density matrix renormalization group (DMRG) and perturbative continuous
unitary transformations (PCUTs), we study the magnetization process in a
magnetic field for all coupling strengths of a quasi-1D version of the 2D
Shastry-Sutherland lattice, a frustrated spin tube made of two orthogonal dimer
chains. At small inter-dimer coupling, plateaus in the magnetization appear at
1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal of
triplons. However, close to the boundary of the product singlet phase, plateaus
of a new type appear at 1/5 and 3/4. They are stabilized by the localization of
{\it bound states} of triplons. Their magnetization profile differs
significantly from that of single triplon plateaus and leads to specific NMR
signatures. We address the possibility to stabilize such plateaus in further
geometries by analyzing small finite clusters using exact diagonalizations and
the PCUTs.Comment: Final version as published in EP
Where does Cosmological Perturbation Theory Break Down?
We apply the effective field theory approach to the coupled metric-inflaton
system, in order to investigate the impact of higher dimension operators on the
spectrum of scalar and tensor perturbations in the short-wavelength regime. In
both cases, effective corrections at tree-level become important when the
Hubble parameter is of the order of the Planck mass, or when the physical wave
number of a cosmological perturbation mode approaches the square of the Planck
mass divided by the Hubble constant. Thus, the cut-off length below which
conventional cosmological perturbation theory does not apply is likely to be
much smaller than the Planck length. This has implications for the
observability of "trans-Planckian" effects in the spectrum of primordial
perturbations.Comment: 25 pages, uses FeynM
Einstein-Cartan gravity with scalar-fermion interactions
In this paper, we have considered the g-essence and its particular cases,
k-essence and f-essence, within the framework of the Einstein-Cartan theory. We
have shown that a single fermionic field can give rise to the accelerated
expansion within the Einstein-Cartan theory. The exact analytical solution of
the Einstein-Cartan-Dirac equations is found. This solution describes the
accelerated expansion of the Universe with the equation of state parameter
as in the case of CDM model.Comment: 6 pages, title is change
DSR as an explanation of cosmological structure
Deformed special relativity (DSR) is one of the possible realizations of a
varying speed of light (VSL). It deforms the usual quadratic dispersion
relations so that the speed of light becomes energy dependent, with preferred
frames avoided by postulating a non-linear representation of the Lorentz group.
The theory may be used to induce a varying speed of sound capable of generating
(near) scale-invariant density fluctuations, as discussed in a recent Letter.
We identify the non-linear representation of the Lorentz group that leads to
scale-invariance, finding a universal result. We also examine the higher order
field theory that could be set up to represent it
Supersymmetric extensions of k-field models
We investigate the supersymmetric extension of k-field models, in which the
scalar field is described by generalized dynamics. We illustrate some results
with models that support static solutions with the standard kink or the compact
profile.Comment: 11 page
- …