7,874 research outputs found
Local spacetime effects on gyroscope systems
We give a precise theoretical description of initially aligned sets of
orthogonal gyroscopes which are transported along different paths from some
initial point to the same final point in spacetime. These gyroscope systems can
be used to synchronize separated observers' spatial frames by free fall along
timelike geodesics. We find that initially aligned gyroscope systems, or
spatial frames, lose their synchronization due to the curvature of spacetime
and their relative motion. On the basis of our results we propose a simple
experiment which enables observers to determine locally whether their spacetime
is described by a rotating Kerr or a non-rotating Schwarzschild metric.Comment: 19 pages, 2 figures, journal references adde
Finsler geometric extension of Einstein gravity
We construct gravitational dynamics for Finsler spacetimes in terms of an
action integral on the unit tangent bundle. These spacetimes are
generalizations of Lorentzian metric manifolds which satisfy necessary
causality properties. A coupling procedure for matter fields to Finsler gravity
completes our new theory that consistently becomes equivalent to Einstein
gravity in the limit of metric geometry. We provide a precise geometric
definition of observers and their measurements, and show that the
transformations by means of which different observers communicate form a
groupoid that generalizes the usual Lorentz group. Moreover, we discuss the
implementation of Finsler spacetime symmetries. We use our results to analyze a
particular spacetime model that leads to Finsler geometric refinements of the
linearized Schwarzschild solution.Comment: 39 pages, 4 figures, journal references adde
Granular discharge rate for submerged hoppers
The discharge of spherical grains from a hole in the bottom of a right
circular cylinder is measured with the entire system underwater. We find that
the discharge rate depends on filling height, in contrast to the well-known
case of dry non-cohesive grains. It is further surprising that the rate
increases up to about twenty five percent, as the hopper empties and the
granular pressure head decreases. For deep filling, where the discharge rate is
constant, we measure the behavior as a function of both grain and hole
diameters. The discharge rate scale is set by the product of hole area and the
terminal falling speed of isolated grains. But there is a small-hole cutoff of
about two and half grain diameters, which is larger than the analogous cutoff
in the Beverloo equation for dry grains
Coherent control for the spherical symmetric box potential in short and intensive XUV laser fields
Coherent control calculations are presented for a spherically symmetric box
potential for non-resonant two photon transition probabilities. With the help
of a genetic algorithm (GA) the population of the excited states are maximized
and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different
frequencies in the femtosecond duration range. We solved the quantum mechanical
problem within the dipole approximation. Our investigation clearly shows that
the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.Comment: 11 Pages 3 Figure
A Theory of Cheap Control in Embodied Systems
We present a framework for designing cheap control architectures for embodied
agents. Our derivation is guided by the classical problem of universal
approximation, whereby we explore the possibility of exploiting the agent's
embodiment for a new and more efficient universal approximation of behaviors
generated by sensorimotor control. This embodied universal approximation is
compared with the classical non-embodied universal approximation. To exemplify
our approach, we present a detailed quantitative case study for policy models
defined in terms of conditional restricted Boltzmann machines. In contrast to
non-embodied universal approximation, which requires an exponential number of
parameters, in the embodied setting we are able to generate all possible
behaviors with a drastically smaller model, thus obtaining cheap universal
approximation. We test and corroborate the theory experimentally with a
six-legged walking machine. The experiments show that the sufficient controller
complexity predicted by our theory is tight, which means that the theory has
direct practical implications. Keywords: cheap design, embodiment, sensorimotor
loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure
Cognition as Embodied Morphological Computation
Cognitive science is considered to be the study of mind (consciousness and thought) and intelligence in humans. Under such definition variety of unsolved/unsolvable problems appear. This article argues for a broad understanding of cognition based on empirical results from i.a. natural sciences, self-organization, artificial intelligence and artificial life, network science and neuroscience, that apart from the high level mental activities in humans, includes sub-symbolic and sub-conscious processes, such as emotions, recognizes cognition in other living beings as well as extended and distributed/social cognition. The new idea of cognition as complex multiscale phenomenon evolved in living organisms based on bodily structures that process information, linking cognitivists and EEEE (embodied, embedded, enactive, extended) cognition approaches with the idea of morphological computation (info-computational self-organisation) in cognizing agents, emerging in evolution through interactions of a (living/cognizing) agent with the environment
Ideal Bose gas in fractal dimensions and superfluid He in porous media
Physical properties of ideal Bose gas with the fractal dimensionality between
D=2 and D=3 are theoretically investigated. Calculation shows that the
characteristic features of the specific heat and the superfluid density of
ideal Bose gas in fractal dimensions are strikingly similar to those of
superfluid Helium-4 in porous media. This result indicates that the geometrical
factor is dominant over mutual interactions in determining physical properties
of Helium-4 in porous media.Comment: 13 pages, 6 figure
- …
