18 research outputs found

    Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    Get PDF
    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 ± 1.1%, mean ± SEM) and hip/thigh region (1.2 ± 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering

    Effect of anatomical origin and cell passage number on the stemness and osteogenic differentiation potential of canine adipose-derived stem cells

    No full text
    Mesenchymal stem cells have a great potential for application in cell based therapies, such as tissue engineering. Adipose derived stem cells have shown the capacity to differentiate into several lineages, and have been isolated in many animal species.  Dog is a very relevant animal model to study several human diseases and simultaneously an important subject in veterinary medicine. Thus, in this study we assessed the potential of canine adipose tissue derived stem cells (cASCs) to differentiate into the osteogenic and chondrogenic lineages by performing specific histological stainings, and studied the cell passaging effect on the cASCs stemness and osteogenic potential. We also evaluated the effect of the anatomical origin of the adipose tissue, namely from abdominal subcutaneous layer and from greater omentum. The stemness and osteogenic differentiation was followed by real time RT-PCR analysis of typical markers of mesenchymal stem cells (MSCs) and osteoblasts. The results obtained revealed that cASCs exhibit a progressively decreased expression of the MSCs markers along passages and also a decreased osteogenic differentiation potential. In the author’s knowledge, this work presents the first data about the MSCs markers profile and osteogenic potential of cASCs along cellular expansion. Moreover, the obtained data showed that the anatomical origin of the adipose tissue has an evident effect in the differentiation potential of the ASCs. Due to the observed resemblances with the human ASCs, we conclude that canine ASCs can be used as a model cells in tissue engineering research envisioning human applications.Authors acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) project (ref. MIT/ECE/0047/2009) and for Joao Filipe Requicha PhD scholarship (SFRH/BD/44143/2008)
    corecore