154 research outputs found

    Current findings for recurring mutations in acute myeloid leukemia

    Get PDF
    The development of acute myeloid leukemia (AML) is a multistep process that requires at least two genetic abnormalities for the development of the disease. The identification of genetic mutations in AML has greatly advanced our understanding of leukemogenesis. Recently, the use of novel technologies, such as massively parallel DNA sequencing or high-resolution single-nucleotide polymorphism arrays, has allowed the identification of several novel recurrent gene mutations in AML. The aim of this review is to summarize the current findings for the identification of these gene mutations (Dnmt, TET2, IDH1/2, NPM1, ASXL1, etc.), most of which are frequently found in cytogenetically normal AML. The cooperative interactions of these molecular aberrations and their interactions with class I/II mutations are presented. The prognostic and predictive significances of these aberrations are also reviewed

    Systemic mastocytosis associated with t(8;21)(q22;q22) acute myeloid leukemia

    Get PDF
    Although KIT mutations are present in 20–25% of cases of t(8;21)(q22;q22) acute myeloid leukemia (AML), concurrent development of systemic mastocytosis (SM) is exceedingly rare. We examined the clinicopathologic features of SM associated with t(8;21)(q22;q22) AML in ten patients (six from our institutions and four from published literature) with t(8;21) AML and SM. In the majority of these cases, a definitive diagnosis of SM was made after chemotherapy, when the mast cell infiltrates were prominent. Deletion 9q was an additional cytogenetic abnormality in four cases. Four of the ten patients failed to achieve remission after standard chemotherapy and seven of the ten patients have died of AML. In the two patients who achieved durable remission after allogeneic hematopoietic stem cell transplant, recipient-derived neoplastic bone marrow mast cells persisted despite leukemic remission. SM associated with t(8;21) AML carries a dismal prognosis; therefore, detection of concurrent SM at diagnosis of t(8;21) AML has important prognostic implications

    Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations

    Get PDF
    A subgroup of pediatric acute T-lymphoblastic leukemia (T-ALL) was characterized by a gene expression profile comparable to that of early T-cell precursors (ETPs) with a highly unfavorable outcome. We have investigated clinical and molecular characteristics of the ETP-ALL subgroup in adult T-ALL. As ETP-ALL represents a subgroup of early T-ALL we particularly focused on this cohort and identified 178 adult patients enrolled in the German Acute Lymphoblastic Leukemia Multicenter studies (05/93–07/03). Of these, 32% (57/178) were classified as ETP-ALL based on their characteristic immunophenotype. The outcome of adults with ETP-ALL was poor with an overall survival of only 35% at 10 years, comparable to the inferior outcome of early T-ALL with 38%. The molecular characterization of adult ETP-ALL revealed distinct alterations with overexpression of stem cell-related genes (BAALC, IGFBP7, MN1, WT1). Interestingly, we found a low rate of NOTCH1 mutations and no FBXW7 mutations in adult ETP-ALL. In contrast, FLT3 mutations, rare in the overall cohort of T-ALL, were very frequent and nearly exclusively found in ETP-ALL characterized by a specific immunophenotype. These molecular characteristics provide biologic insights and implications with respect to innovative treatment strategies (for example, tyrosine kinase inhibitors) for this high-risk subgroup of adult ETP-ALL

    The Pathway to Detangle a Scrambled Gene

    Get PDF
    Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20-30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes. Massive genome rearrangements are therefore critical for development.To understand the process of DNA deletion and reorganization during macronuclear development, we examined the population of DNA molecules during assembly of different scrambled genes in two related organisms in a developmental time-course by PCR. The data suggest that removal of conventional IESs usually occurs first, accompanied by a surprising level of error at this step. The complex events of inversion and translocation seem to occur after repair and excision of all conventional IESs and via multiple pathways.This study reveals a temporal order of DNA rearrangements during the processing of a scrambled gene, with simpler events usually preceding more complex ones. The surprising observation of a hidden layer of errors, absent from the mature macronucleus but present during development, also underscores the need for repair or screening of incorrectly-assembled DNA molecules

    Lack of clinical efficacy of imatinib in metastatic melanoma

    Get PDF
    This two-centre phase-II trial aimed at investigating the efficacy of imatinib in metastasised melanoma patients in correlation to the tumour expression profile of the imatinib targets c-kit and platelet-derived growth factor receptor (PDGF-R). The primary study end point was objective response according to RECIST, secondary end points were safety, overall and progression-free survival. In all, 18 patients with treatment-refractory advanced melanoma received imatinib 800 mg day−1. In 16 evaluable patients no objective responses could be observed. The median overall survival was 3.9 months, the median time to progression was 1.9 months. Tumour biopsy specimens were obtained from 12 patients prior to imatinib therapy and analysed for c-kit, PDGF-Rα and -Rβ expression by immunohistochemistry. In four cases, cell lines established from these tumour specimens were tested for the antiproliferative effects of imatinib and for functional mutations of genes encoding the imatinib target molecules. The tumour specimens stained positive for CD117/c-kit in nine out of 12 cases (75%), for PDGF-Rα in seven out of 12 cases (58%) and for PDGF-Rβ in eight out of 12 cases (67%). The melanoma cell lines showed a heterogenous expression of the imatinib target molecules without functional mutations in the corresponding amino-acid sequences. In vitro imatinib treatment of the cell lines showed no antiproliferative effect. In conclusion, this study did not reveal an efficacy of imatinib in advanced metastatic melanoma, regardless of the expression pattern of the imatinib target molecules c-kit and PDGF-R

    IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F

    Get PDF
    Isocitrate dehydrogenase (IDH) mutations are frequent in blast-phase myeloproliferative neoplasms and might therefore contribute to leukemic transformation. We examined this possibility in 301 consecutive patients with chronic-phase primary myelofibrosis (PMF). The mutant IDH was detected in 12 patients (4%): 7 IDH2 (5 R140Q, 1 R140W and 1 R172G) and 5 IDH1 (3 R132S and 2 R132C). In all, 6 (50%) of the 12 IDH-mutated patients also expressed JAK2V617F. Overall, 18 (6%) patients displayed only MPL and 164 (54.3%) only JAK2 mutations. Multivariable analysis that accounted for conventional risk factors disclosed inferior overall survival (OS; P=0.03) and leukemia-free survival (LFS; P=0.003) in IDH-mutated patients: OS hazard ratio (HR) was 0.39 (95% confidence interval (95% CI) 0.2–0.75), 0.50 (95% CI 0.27–0.95) and 0.53 (95% CI 0.23–1.2) for patients with no, JAK2 or MPL mutations, respectively. Further analysis disclosed a more pronounced effect for the mutant IDH on OS and LFS in the presence (P=0.0002 and P<0.0001, respectively) as opposed to the absence (P=0.34 and P=0.64) of concomitant JAK2V617F. Analysis of paired samples obtained during chronic- and blast-phase disease revealed the presence of both IDH and JAK2 mutations at both time points. Our observations suggest that IDH mutations in PMF are independent predictors of leukemic transformation and raise the possibility of leukemogenic collaboration with JAK2V617F

    Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    Get PDF
    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed
    corecore