80 research outputs found

    Um novo olhar sobre a agricultura brasileira.

    Get PDF
    bitstream/item/133378/1/Um-novo-olhar-sobre-a-agricultura-brasileira.pd

    Interaction of the Retinoblastoma Protein with Orc1 and Its Recruitment to Human Origins of DNA Replication

    Get PDF
    Background: The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. Methodology/Principal Findings: Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by specifically binding to origins of DNA replication in a cell cycle regulated manner. We show that, both in vitro and inside the cells, the largest subunit of the origin recognition complex (Orc1) specifically binds hypo-phosphorylated Rb and that this interaction is competitive with the binding of Rb to E2F1. The displacement of Rb-bound Orc1 by E2F1 at origins of DNA replication marks the progression of the G1 phase of the cell cycle toward the G1-S border. Conclusions/Significance: The participation of Rb and E2F1 in the formation of the multiprotein complex that binds origins of DNA replication in mammalian cells appears to represent an effective mechanism to couple the expression of gene

    A prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation

    Get PDF
    RecQ helicases have attracted considerable interest in recent years due to their role in the suppression of genome instability and human diseases. These atypical helicases exert their function by resolving a number of highly specific DNA structures. The crystal structure of a truncated catalytic core of the human RECQ1 helicase (RECQ149–616) shows a prominent β-hairpin, with an aromatic residue (Y564) at the tip, located in the C-terminal winged-helix domain. Here, we show that the β-hairpin is required for the DNA unwinding and Holliday junction (HJ) resolution activity of full-length RECQ1, confirming that it represents an important determinant for the distinct substrate specificity of the five human RecQ helicases. In addition, we found that the β-hairpin is required for dimer formation in RECQ149–616 and tetramer formation in full-length RECQ1. We confirmed the presence of stable RECQ149–616 dimers in solution and demonstrated that dimer formation favours DNA unwinding; even though RECQ1 monomers are still active. Tetramers are instead necessary for more specialized activities such as HJ resolution and strand annealing. Interestingly, two independent protein–protein contacts are required for tetramer formation, one involves the β-hairpin and the other the N-terminus of RECQ1, suggesting a non-hierarchical mechanism of tetramer assembly

    Deregulated Cdc6 inhibits DNA replication and suppresses Cdc7-mediated phosphorylation of Mcm2–7 complex

    Get PDF
    Mcm2–7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2–7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2–4–6–7 in purified systems, rather modulates Mcm2–7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2–7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication

    VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread

    Get PDF
    The specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2Y949F/Y949F leads to VEGFA-resistant endothelial adherens junctions and a block in molecular extravasation. Vessels in Vegfr2Y949F/Y949F mice remain sensitive to inflammatory cytokines, and vascular morphology, blood pressure and flow parameters are normal. Tumour-bearing Vegfr2Y949F/Y949F mice display reduced vascular leakage and oedema, improved response to chemotherapy and, importantly, reduced metastatic spread. The inflammatory infiltration in the tumour micro-environment is unaffected. Blocking VEGFAinduced disassembly of endothelial junctions, thereby suppressing tumour oedema and metastatic spread, may be preferable to full vascular suppression in the treatment of certain cancer forms

    Investigation of the Acetylation Mechanism by GCN5 Histone Acetyltransferase

    Get PDF
    The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    The Caenorhabditis elegans Elongator Complex Regulates Neuronal α-tubulin Acetylation

    Get PDF
    Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology
    corecore