184 research outputs found

    Lifting the Veil of Violence: The October Crisis, 1970.

    Get PDF
    This work explores the uses of violence during the October Crisis of 1970 in Québec, Canada. The author questions the current state of historiographical approaches to the October Crisis and posits a new approach. Violence, seen as a language, permeates the events surrounding the kidnapping and later murder of Pierre Laporte. The reaction of the Québécois public at large is examine in response to the uses of violence by the belligerent parties. The work concludes that the FLQ did not possess the requisite capacity for violence to effectively compete with the Canadian Federal Government and other insights into the legacy of the Crisis itself

    Frost Witches: The Spark of the Bamberg Witch Craze

    Get PDF
    This article explores the Bamburg Witch Craze from the point of view of the frost that devastated the wine harvest. The author uses the incident, which destroyed the crop that was vital to the local economy, to infer how this explainable natural disaster was interpreted to mean that the community had come under threat from super natural forces. The author finds that cases of witchcraft were more lethal depending on what type of community the accused lived in (i.e. urban vs. rural) and in what time period the trial occurred

    A Novel Endothelial L-Selectin Ligand Activity in Lymph Node Medulla That Is Regulated by α(1,3)-Fucosyltransferase-IV

    Get PDF
    Lymphocytes home to peripheral lymph nodes (PLNs) via high endothelial venules (HEVs) in the subcortex and incrementally larger collecting venules in the medulla. HEVs express ligands for L-selectin, which mediates lymphocyte rolling. L-selectin counterreceptors in HEVs are recognized by mAb MECA-79, a surrogate marker for molecularly heterogeneous glycans termed peripheral node addressin. By contrast, we find that medullary venules express L-selectin ligands not recognized by MECA-79. Both L-selectin ligands must be fucosylated by α(1,3)-fucosyltransferase (FucT)-IV or FucT-VII as rolling is absent in FucT-IV+VII−/− mice. Intravital microscopy experiments revealed that MECA-79–reactive ligands depend primarily on FucT-VII, whereas MECA-79–independent medullary L-selectin ligands are regulated by FucT-IV. Expression levels of both enzymes paralleled these anatomical distinctions. The relative mRNA level of FucT-IV was higher in medullary venules than in HEVs, whereas FucT-VII was most prominent in HEVs and weak in medullary venules. Thus, two distinct L-selectin ligands are segmentally confined to contiguous microvascular domains in PLNs. Although MECA-79–reactive species predominate in HEVs, medullary venules express another ligand that is spatially, antigenically, and biosynthetically unique. Physiologic relevance for this novel activity in medullary microvessels is suggested by the finding that L-selectin–dependent T cell homing to PLNs was partly insensitive to MECA-79 inhibition

    CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

    Get PDF
    Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease

    Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development

    Get PDF
    With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality

    UV spectrophotometry method for the monitoring of galacto-oligosaccharides production

    Get PDF
    Monitoring the industrial production of galacto-oligosaccharides (GOS) requires a fast and accurate methodology able to quantify, in real time, the substrate level and the product yield. In this work, a simple, fast and inexpensive UV spectrophotometric method, together with partial least squares regression (PLS) and artificial neural networks (ANN), was applied to simultaneously estimate the products (GOS) and the substrate (lactose) concentrations in fermentation samples. The selected multiple models were trained and their prediction abilities evaluated by cross-validation and external validation being the results obtained compared with HPLC measurements. ANN models, generated from absorbance spectra data of the fermentation samples, gave, in general, the best performance being able to accurately and precisely predict lactose and total GOS levels, with standard error of prediction lower than 13 g kg 1 and coefficient of determination for the external validation set of 0.93–0.94, showing residual predictive deviations higher than five, whereas lower precision was obtained with the multiple model generated with PLS. The results obtained show that UV spectrophotometry allowed an accurate and non-destructive determination of sugars in fermentation samples and could be used as a fast alternative method for monitoring GOS production.Fundação para a Ciência e a Tecnologia (FCT) - Bolsa de doutouramento SFRH/BDE/15510/2004Agência da Inovação – Programa IDEIA (Potugal

    Bub1-Mediated Adaptation of the Spindle Checkpoint

    Get PDF
    During cell division, the spindle checkpoint ensures accurate chromosome segregation by monitoring the kinetochore–microtubule interaction and delaying the onset of anaphase until each pair of sister chromosomes is properly attached to microtubules. The spindle checkpoint is deactivated as chromosomes start moving toward the spindles in anaphase, but the mechanisms by which this deactivation and adaptation to prolonged mitotic arrest occur remain obscure. Our results strongly suggest that Cdc28-mediated phosphorylation of Bub1 at T566 plays an important role for the degradation of Bub1 in anaphase, and the phosphorylation is required for adaptation of the spindle checkpoint to prolonged mitotic arrest
    corecore